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LETTER FROM THE EDITOR

Nicholas R. Baeth, Rhonda McKee, and Loren Luther start off the issue with an exam-
ination of how the center of a downtown region changes when the notion of distance
changes. The problem generalizes one about a dartboard from the Fiftieth William
Lowell Putnam Mathematical Competition from 1989.

Where should one stand to view a painting? This problem is known as the
Regiomontanus problem. In their article, Ben Letson and Mark Schwartz unite
geometry- and calculus-based solutions to the problem, using parametric curves and
results from differential geometry.

Continuing the theme of where it is best to stand to view a painting, Fumiko Futa-
mura and Robert Lehr review geometric and algebraic techniques to determine where
one should stand in front of an image in two-point perspective to view it correctly.
They derive a simple algebraic formula and a technique that uses slopes on a perspec-
tive grid.

In the next article, Nathan Kaplan considers walks on the Z
2 lattice. He counts

how many minimal length walks between two points goes through another point to
determine where he should open a hypothetical restaurant. He relates the answer to the
hypergeometric function and the gamma function before suggesting the same question
in higher dimensions.

Modern technology may amaze us, but it is often possible for us to understand
how it works, especially when the technology is based on mathematics! Ed Aboufadel
explains how the Shazam app works by considering a similar problem. He describes
a wavelet-based method to search a database of signals to find other signals that are
similar to it. However, the signals are those from continuous glucose monitors used in
the management of type-1 diabetes.

Spliced in between the articles are three proofs without words. One by Charles Mar-
ion looks at a relationship between triangular sums and perfect quartics. Tom Edgar
divides up a square into a series of perfect powers. The final proof without words is by
Samuel Moreno. He visually evaluates the sum of the first k odd integers.

Maureen Carroll offers a crossword about geometry and Lai Van Duc Thinh pro-
vides another Pinemi puzzle. Problems and Reviews are followed by the announce-
ment of the Allendoerfer award winners: Brian Conrey, James Gabbard, Katie Grant,
Andrew Liu, and Kent Morrison for their article “Intransitive Dice” and Vladimir
Pozdnyakov and Michael Steele for their article “Buses, Bullies, and Bijections.” The
issue concludes with the problems, solutions, and results from the 46th United States
of America Mathematical Olympiad and 8th United States of America Junior Mathe-
matical Olympiad.

Michael A. Jones, Editor
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A R T I C L E S

The Downtown Problem: Variations on a
Putnam Problem
NICHOLAS R. BAETH

LOREN LUTHER
RHONDA MCKEE
University of Central Missouri

Warrensburg, MO 64093
baeth@ucmo.edu
luther@ucmo.edu

mckee@ucmo.edu

Have you ever considered playing a game of darts where the dartboard is square but
points are scored based on thrown darts being closer to the center of the board than to
the edge? While standing somewhere in a city, have you ever wondered whether you
might be closer to the city center than to the edge of town? Or, perhaps at some point
you’ve wondered whether you should reposition a piece of furniture so that it’s closer
to the middle of the room than to a wall. If you have mathematical tendencies, then
you might have wondered what does “closer” really mean. In a city, do we measure
distances “as the crow flies,” or do we measure distances along perpendicular paths
given by streets and sidewalks? If you’ve pondered such questions, you’re not alone.
The square dartboard problem appeared in the afternoon session of the Fiftieth William
Lowell Putnam Mathematical Competition in 1989 [4]. In this article we consider
variations of this problem. The general theme will be to compute the relative sizes
of regions inside squares and cubes consisting of points closer to the centers of these
figures than to the boundaries. Throughout we will consider several different means
of measuring distance and pose several open problems for the reader to explore. We
begin now with the original problem.

Problem 1. (1989 Putnam Exam B-1) A dart, thrown at random, hits a square tar-
get. Assuming that any two parts of the target of equal area are equally likely to be hit,
find the probability that the point hit is nearer to the center than to any edge. Express
your answer in the form a

√
b+c
d , where a, b, c, d are positive integers.

The solution is given in [4], but we encourage the reader to find it themselves before
reading any further. We now give a solution, though with a slightly different approach
than the official solution. Let D denote the region inside the square C (Read on to see
why we are naming a square “C”.) consisting of all points that are closer to the center
of C than to any of the four edges of C. Then the probability we are after is equal to
the ratio Area(D)

Area(C)
. Since rotations and translations are isometries, and since any scaling

of C will correspond to a scaling of D by the same proportion, we may assume that
C is the square of side length 1 centered at the origin with vertices at

(
1
2 ,

1
2

)
,
(− 1

2 ,
1
2

)
,(− 1

2 , − 1
2

)
, and

(
1
2 , − 1

2

)
. Therefore the probability that a dart hits a point closer to the

center of C than to any edge of C is simply Area(D).

Math. Mag. 90 (2017) 243–257. doi:10.4169/math.mag.90.4.243. c© Mathematical Association of America
MSC: Primary 51K05
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Figure 1 Putnam problem B-1 (1989).

A point (x, y) in the square is closer to the center of C than to the edge of C given by
y = 1

2 if and only if
√

x2 + y2 < 1
2 − y, or equivalently, y < 1

4 − x2. The inequality
y < 1

4 − x2 describes a region bounded by a parabola. Similar inequalities describe
the regions within C consisting of all points closer to the center of C than to each of
the remaining three sides. Then D is precisely the intersection of these four regions.
Figure 1 shows the region D inside the unit square. It is easy to check that pairs of these

parabolas intersect at the points
(
±

√
2−1
2 , ±

√
2−1
2

)
and that D is comprised of a smaller

square C′ with vertices at these four points and four parabolic regions appended to each
of the four sides of C′. Then

Area(D) = Area(C′
) + 4

∫ √
2−1
2

1−√
2

2

((
1

4
− x2

)
−

√
2 − 1

2

)
dx,

providing the following solution:

Answer 1. The fraction of the square containing points closer to the center than to any
side is 4

√
2−5
3 , or approximately 21.9%.

But why do we care? Well, suppose that the unit square C considered above repre-
sents a city with center at (0, 0). Then perhaps the set of points D, being closer to the
center than to the outskirts, represents the downtown region. Then Answer 1 gives the
size of the downtown relative to the entire city; that is, the downtown region comprises
approximately 21.9% of the city. Having this solution, and a little motivation, we now
reframe and generalize the problem. First, it is clear that “closer” depends on the dis-
tance function being used. Distance functions are more properly known as metrics.
For completeness we give the following well-known definition, which can be found,
for example, in [1].

Definition. A metric on a set X is a function d : X × X → [0, ∞] such that:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x) for all x, y ∈ X , and
3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

In this case (X, d) is called a metric space and d is referred to as a distance on X .
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The usual Euclidean distance in R
2 and R

3 both satisfy the conditions of Definition
and are thus metrics.

In Problem 1 we found the set of points x in the square C with center (0, 0) such
that d(x, (0, 0)) ≤ d(x, y) whenever y is any point on any side of C. To make this
language less cumbersome, we introduce some additional terminology.

For an n-dimensional square region (hypercube) C in R
n , we denote by ∂(C), the

boundary of C. That is, ∂(C) is the union of the (n − 1)-dimensional faces of C. For
example, if C is a square in R

2, then ∂(C) denotes the union of the four line segments
that constitute the sides of C, and if C is a cube, then ∂(C) denotes the union of
the six square faces of C. In later sections we will have need to compute a distance
from a point to a set. We define that concept now. If (X, d) is a metric space and
x ∈ X and A ⊆ X, then we define the distance from the point x to the subset A as
d(x, A) = inf{d(x, y) : y ∈ A}.

We now consider the following generalization of Problem 1.

Problem 2. (The Downtown Problem) Let d be a metric on R
n and let C(n, d) (or

just C if the dimension and metric are clear) denote a generalized square region
(hypercube) in R

n, which we shall think of as an n-dimensional city. We define the
downtown region, denoted D(n, d) (or just D), of the city to be the set of all points in
C(n, d) that are closer (using metric d) to the center of C(n, d) than to its boundary
∂(C(n, d)). We wish to find the relative size of the downtown region; that is, to find
S(n, d) = si ze[D(n,d)]

si ze[C(n,d)] , where “size” will mean area in R
2 and volume in R

3.

Note that if d is the usual Euclidean metric, denoted dE , on R
2, then Problem 2

is equivalent to Problem 1. That is, the relative size of the downtown region of our
2-dimensional square city is 4

√
2−5
3 ≈ 0.219. In each of the remaining sections, we (1)

give a variation of Problem 2, (2) solve that variation of the problem, and (3) pose one
or more other interesting and tractable problems, extending that section’s variation.
There are, of course, many other variations one might consider, and we encourage the
reader to do just that!

The Euclidean metric in three dimensions

In this section we consider Problem 2 for n = 3 and the usual Euclidian metric dE .
That is, we pose the following problem for a city similar to the Starbase Yorktown in
Star Trek Beyond where one can travel in any direction in 3-dimensional space.

Problem 3. What is the relative size of the downtown region in a futuristic cube-
shaped city in R

3 if distances are measured using the usual metric? That is, find
S(3, dE).

Using the notation of Problem 2, C = C(3, dE) and D = D(3, dE). We are looking
for S(3, dE) = Vol(D)

Vol(C)
. Since rotations and translations are isometries and since any

scaling of C will correspond to a scaling of D by the same proportion, we may assume
that C is the unit cube centered at the origin (0, 0, 0), in which case the relative size of
the downtown region is S(3, dE) = Vol(D).

A point (x, y, z) in C is closer to the center of C than to the plane defined by z = 1
2 if

and only if
√

x2 + y2 + z2 < 1
2 − z, or equivalently, z < 1

4 − x2 − y2. This inequality
describes a solid bounded by a paraboloid. Similar inequalities describe regions within
C consisting of all points closer to (0, 0, 0) than to each of the remaining five faces
comprising ∂(C). Then D is the intersection of these six solids. This region D is shown
in Figure 2.
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Figure 2 The downtown region for the Euclidean metric on R
3.

To compute the volume of D, we follow an argument similar to that in the solu-
tion to Problem 1. Let a = (x1, y1, z1) denote the point in the first octant where the
paraboloids defined by z = 1

4 − x2 − y2, x = 1
4 − y2 − z2, and y = 1

4 − x2 − z2 inter-
sect. The paraboloids defined by z = 1

4 − x2 − y2 and y = 1
4 − x2 − z2 intersect inside

C only on the plane defined by z = y. Similarly the paraboloids defined by z =
1
4 − x2 − y2 and x = 1

4 − y2 − z2 intersect only on the plane defined by z = x . Since

a is a point on each of these three paraboloids, x1 = y1 = z1 =
√

3−1
4 . Let A denote

the solid bounded by z = 1
4 − x2 − y2, z =

√
3−1
4 , y = ±

√
3−1
4 , and x = ±

√
3−1
4 . The

parabolic region A is the portion of D lying above a smaller cube C′ centered at the ori-
gin with faces given by x = ±

√
3−1
4 , y = ±

√
3−1
4 , and z = ±

√
3−1
4 . Region A is shown

in Figure 3. Thus

Vol(A) =
∫ √

3−1
4

1−√
3

4

∫ √
3−1
4

1−√
3

4

(
1

4
− x2 − y2 −

√
3 − 1

4

)
dx dy = 7 − 4

√
3

12
.

A similar solid arises for each of the other five faces of the cube C′ and the volume of
their union is 7−4

√
3

2 .
Finally we will consider the points that are in D but neither in the smaller cube

C′ nor in any of the six parabolic regions just considered. These points constitute 12
“parabolic wedges.” The solid in Figure 4 is half of one of the parabolic wedges that
are attached to each of the 12 edges of C′. Since the sides of the larger parabolic region,
shown in Figure 3, are flattened and since it has indentations in its four corners, it is
not too difficult to imagine how these parabolic wedges from Figure 4 attach to the
region from Figure 3.

We again consider the intersection of the paraboloids defined by z = 1
4 − x2 − y2

and y = 1
4 − x2 − z2. Since z = y on this intersection, x2 + (y + 1

2 )
2 = 1

2 . That is,

these two paraboloids intersect on the cylinder x2 + (
y + 1

2

)2 = 1
2 . Let B be the region

bounded by y =
√

3−1
4 , z =

√
3−1
4 , z = 1

4 − x2 − y2, y = 1
4 − x2 − z2, and x = ±

√
3−1
4 .

Then

Vol(B) = 2
∫ 1−√

3
4

√
3−1
4

∫ − 1
2 +

√
1
2 −x2

√
3−1
4

(
1

4
− x2 − y2 − y

)
dy dx
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Figure 3 The parabolic region lying above C′.
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Figure 4 A parabolic wedge.

=
π − 5 +

(
1 + √

3
)√

2+√
3

8

48
.

A similar solid arises for each of the other 11 edges of the smaller cube C′ and the

volume of their union is
π−5+(1+√

3)
√

2+√
3

8
4 . Thus the volume of D is the sum of the

volume of the smaller cube, the six parabolic regions, and the 12 “parabolic wedges.”
In particular,

Vol(D) =
(√

3 − 1

2

)3

+ 7 − 4
√

3

2
+

π − 5 +
(

1 + √
3
)√

2+√
3

8

4
,

giving the following solution.
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Answer 3. The relative size of the downtown region is

S(3, dE) =
π + 4 − 5

√
3 +

(
1 + √

3
)√

2+√
3

8

4
.

That is, the downtown region comprises approximately 8.6% of the 3-dimensional city.
Comparing to Answer 1, we see that, using the Euclidean metrics, the relative size

of the downtown region in 3-dimensions is smaller than the relative size of the down-
town region in 2-dimensions, that is, S(3, dE) < S(2, dE). Also, S(3, dE) is, curiously
unlike S(2, dE), transcendental and not algebraic. See, for example, [8], for a proof
that π is transcendental.

Question 4. It seems only natural to generalize even further. What is the relative size,
using the Euclidean metric, of the downtown region in an n-dimensional city? As n
grows larger, does S(n, dE) get smaller? Does limn→∞ S(n, dE) exist? If so, what is
it? For which n is S(n, dE) algebraic?

The taxicab metric

Dimension Two. Thus far we have used only the usual Euclidean metric to measure
the distance between two points in our city. In a city, however, it is likely that we
cannot walk or drive in a straight line to our destination. How do such considerations
effect the relative size of the downtown? The taxicab metric dT in R

2 measures the
distance between two points much the way a driver of a taxicab would; allowing only
paths from point a to point b by way of “streets” parallel to either the x- or y-axis.
More precisely, if a = (x1, y1) and b = (x2, y2), then the taxicab distance from a to b
is dT (a, b) = |x2 − x1| + |y2 − y1|.

It’s not difficult to show that dT satisfies the definition of a metric. Early in the
20th century Herman Minkowski [7] defined a family of metrics which result in non-
Euclidean geometries. The taxicab metric was among them, although Karl Menger [6]
was the first, in 1952, to call it the “taxicab” metric. In 1975, Eugene Krause [5] further
explored the geometry created by this metric. Much more information on this metric
can be found at [10] and in [2].

One interesting difference between the Euclidean and taxicab metrics is the fact that
rotations do not preserve taxicab distances. To see this note that dT ((0, 0), (1, 0)) = 1
and that a rotation through an angle of π/4 radians takes the point (1,0) to the point
(
√

2/2,
√

2/2). Now, dT ((0, 0), (
√

2/2,
√

2/2)) = √
2 �= 1. Thus, rotations are not

taxicab isometries. On the other hand, it is not difficult to see that both scaling and
translations are taxicab isometries. In this section, we consider a square city whose
boundaries are parallel to the coordinate axes. We leave the effect of rotation as a
problem for the reader to explore, since rotating C will drastically change the shape of
D. Also, in this city, area will be calculated using Euclidean geometry. It is only for
measuring distances between points within the square that we use the taxicab metric.
Thus we investigate the following problem.

Problem 5. What is the the relative size of the downtown region in a square city in
R

2, with sides parallel to the coordinate axes, using the taxicab metric? That is, find
S(2, dT ) for this city.

Since translations and scaling are taxicab isometries, we may assume that C is
the square of side length 1 centered at the origin with vertices at

(
1
2 ,

1
2

)
,
(− 1

2 ,
1
2

)
,(− 1

2 , − 1
2

)
, and

(
1
2 , − 1

2

)
. Then the relative size of the downtown region will be

S(2, dT ) = Area(D).
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A point (x, y) is closer to the center of C than the edge of C given by y = 1
2 if

and only if |x | + |y| <
∣∣ 1

2 − y
∣∣. Equivalently, y < 1

4 − |x |
2 , since if y ≤ 0 the point

will be closer to the center than to the edge defined by y = 1
2 . The inequality y <

1
4 − |x |

2 defines a region inside C bounded above by the lines y = 1
4 + x

2 and y = 1
4 − x

2 .
Similar inequalities describe the regions in C consisting of all the points closer to the
center of C than to each of its remaining three sides. Then D(2, dT ), the downtown
region, is precisely the intersection of these four regions, as illustrated in Figure 5.

0.4

0.2

0.40.2

0.0

0.0

–0.2

–0.4

–0.4 –0.2

Figure 5 Downtown region for taxicab metric in R
2.

We now compute the area of D = D(2, dT ). From Figure 5 it appears that D is a
smaller square C′ with triangles appended to each side (and is not a regular octagon).
This is indeed the case. In the first quadrant, the lines defined by y = 1

4 − |x |
2 and

x = 1
4 − |y|

2 intersect at
(

1
6 ,

1
6

)
. Similarly, we find that the other pairs of lines intersect

at the other four vertices of a smaller square C′ with vertices at
(± 1

6 , ± 1
6

)
. Let A

denote the triangular region bounded by the three lines defined by y = 1
4 − |x |

2 and
y = 1

6 . Then Area(A) = 1
72 . A similar triangular region arises for each of the other

three sides of C′. Thus Area(D) = 1
9 + 4 · 1

72 and we have our solution.

Answer 5. The relative size of the two-dimensional taxicab downtown is S(2, dT )

= 1
6 , or just over 16.6%.

We make two simple observations about this answer compared with the answer to
Problem 1. First, since 1

6 < 4
√

2−5
3 , the downtown region in a square city is smaller

if one is measuring using the taxicab metric than if using the Euclidean metric, i.e.,
S(2, dT ) < S(2, dE). Second, we note that S(2, dT ) is not only algebraic, but rational,
unlike the irrational S(2, dE).

Question 6. Taxicab purists would likely balk at the way we are using one metric to
compute distances, while using another metric to compute areas (see [10]). Conse-
quently, we ask: What would the answer to Problem 5 be if areas are also calculated
using the taxicab metric? As mentioned earlier, rotations are not taxicab isometries.
How does rotation affect the answer to Problem 5?

Dimension three We now consider the downtown problem in R
3, using the taxicab

metric. Imagine the scene from Star Wars: Attack of the Clones where a chase scene
takes place on “streets” in space, each parallel to one of the x-, y-, or z-axes. Analogous
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to the definition of the taxicab metric in R
2, the taxicab distance between two points

a = (x1, y1, z1) and b = (x2, y2, z2) in R
3 is dT (a, b) = |x2 − x1| + |y2 − y1| + |z2 −

z1|. For reasons similar to those outlined in the two-dimensional case, when we use
the term “cube” we mean a cube from Euclidean geometry with faces parallel to the
coordinate planes.

Problem 7. What is the relative size of the downtown region in a cube-shaped city in
R

3, with faces parallel to the coordinate planes, using the taxicab metric? That is, find
S(3, dT ).

Again, since translations and scalings are taxicab isometries, we may assume that
C is the cube centered at the origin such that ∂(C) is the union of the six unit squares
lying in the planes x = ± 1

2 , y = ± 1
2 , and z = ± 1

2 . Then S(3, dT ) = Vol(D)

Vol(C)
= Vol(D)

since Vol(C) = 1.
A point (x, y, z) in C is closer to the center of C than to the plane defined by z = 1

2 if
and only if |x | + |y| + |z| <

∣∣ 1
2 − z

∣∣. Equivalently, z < 1
4 − 1

2 (|x | + |y|) since if z ≤ 0,
the point will be closer to the center than to the edge defined by z = 1

2 . Similar inequal-
ities describe the regions consisting of all points closer to the center of C than to each
of the remaining five faces. Then D, the downtown region, is the intersection of these
six solids. The solid D is illustrated in Figure 6. We will see that D is comprised of sev-
eral geometric solids; a smaller cube C′ centered at the origin with faces in the planes
x = ± 1

8 , y = ± 1
8 , and z = ± 1

8 , and a pyramid-like shape on each of the faces of C′.

0.2

0.2

0.2

0.0

0.0

0.0

–0.2

–0.2
–0.2

Figure 6 Downtown region for taxicab metric in R
3.

Let a = (x1, y1, z1) denote the point in the first octant where the planes defined
by z = 1

4 − 1
2 (|x | + |y|), y = 1

4 − 1
2 (|x | + |z|), and x = 1

4 − 1
2 (|y| + |z|) intersect.

Since a lies in the first octant, |x | = x , |y| = y, and |z| = z. The planes defined by
z = 1

4 − 1
2 (x + y) and y = 1

4 − 1
2 (x + z) intersect when y = z, so y1 = z1. Similarly,

x1 = z1 and so x1 = y1 = z1 = 1
8 and a = (

1
8 ,

1
8 ,

1
8

)
.

Let A be the pyramid-like region bounded by z = 1
4 − 1

2 (|x | + |y|), z = 1
8 , z = ±x ,

and z = ±y. That is, A is the pyramid A′ bounded by z = 1
4 − 1

2 (|x | + |y|) and z = 1
8

but missing a smaller pyramid with a triangular base from each of the four corners of its
square base. These smaller pyramids are the solids bounded by z = 1

4 − 1
2 (|x | + |y|),

z = 1
8 , and z = y; z = 1

4 − 1
2 (|x | + |y|), z = 1

8 , and z = −y; z = 1
4 − 1

2 (|x | + |y|),
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z = 1
8 , and z = x ; and z = 1

4 − 1
2 (|x | + |y|), z = 1

8 , and z = −x . Figure 7 shows the
region A, which can be seen to be missing a small pyramid from each corner.

0.2

0.2

0.0

0.1

0.2

0.3

0.0
–0.2

–0.2

Figure 7 Region A.

To find the volume of A we will first consider the volume of the pyramid A′.
The planes defined by z = 1

4 − 1
2 (|x | + |y|) intersect the plane z = 1

8 when 1
8 = 1

4 −
1
2 (|x | + |y|), or equivalently, |x | + |y| = 1

4 . This equation describes the square base
of the pyramid A′, with vertices at

(
0, 1

4

)
,
(
0, − 1

4

)
,
(

1
4 , 0

)
, and

(− 1
4 , 0

)
. Thus A′ is a

pyramid with a square base of area 1
8 and height 1

8 and has volume 1
192 .

Each of the smaller pyramids to be removed from A′, say the one bounded by z =
1
4 − 1

2 (|x | + |y|), z = 1
8 , and z = y, has height 1

24 and a triangular base with area
1
64 , and thus volume 1

4608 . Therefore Vol A = 1
192 − 4 1

4608 = 5
1152 . A similar solid is

appended to each of the other five faces of the cube C′. The union of these six solids
has volume 5

192 . Then Vol(D) = (
1
4

)3 + 5
192 giving us the following solution.

Answer 7. The relative size of the three-dimensional taxicab downtown is 1
24 , or just

over 4.1%.

As with the Euclidean metric, the relative size of the downtown region in 3-
dimensions is smaller than the relative size of the downtown region in 2-dimensions,
that is, S(3, dT ) < S(2, dT ). Also, as in the two-dimensional setting, S(3, dT ) <

S(3, dE).

Question 8. If C is an n-dimensional hypercube-shaped city, what is S(n, dT )? What
would S(n, dT ) be if volumes are computed using only the taxicab metric? How does
rotation affect the answer?

An interesting bounded metric

We now consider Problem 2 with the following natural twist. Let δ be some fixed num-
ber and suppose that you have deemed any (Euclidean) distance larger than δ too far
to walk. Consequently, when traveling between two points that are Euclidean distance
more than δ apart, you will take some alternate transportation—car, bus, subway, etc.
But, since you don’t want your friends to label you as lazy, you have decided that
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whenever taking one of these alternate modes of transportation, you will first take a
walk of Euclidian distance exactly δ. In other words, every trip you take anywhere
in the city will require walking a distance no more than δ, and that if you travel a
total distance δ or more, you will walk exactly a distance of δ. We now consider the
downtown region with respect to this new “walking metric.” Let C be a square in R

2

with side length s and let δ be a real number satisfying 0 < δ < 1
2 s. Define the delta

(walking) metric on R
2 by dδ(a, b) = min{dE(a, b), δ}. Note that dδ(a, b) ≤ δ for all

points a and b. The restriction δ < 1
2 s is in place simply because any point in C is no

more than 1
2 s away from some side of C when using dE , so if δ ≥ 1

2 s, the size of the
downtown region can be found using the usual Euclidean metric as in Problem 1.

In mathematics it is sometimes convenient to work with metrics such as the one we
use here, that are bounded by some fixed number. Of course all of the metrics we have
considered are bounded when restricted to a bounded n-dimensional hypercube, but dδ

is bounded on all of R2. This particular metric is of interest to topologists, since it can
be used to prove that every metric space is topologically equivalent (homeomorphic)
to a bounded metric space (see [1]). We now consider the following problem.

Problem 9. What is the relative size of the downtown region in a square city in R
2

using the delta metric. That is, find S(2, dδ).

As before, considering isometries and scaling, we may assume C is the unit square
centered at the origin with vertices

(
1
2 ,

1
2

)
,
(− 1

2 ,
1
2

)
,
(− 1

2 , − 1
2

)
, and

(
1
2 , − 1

2

)
, and that

0 < δ < 1
2 .

By definition of the delta metric, the distance dδ((0, 0), (x, y)), from the origin to
the point (x, y), is less than δ if and only if the Euclidean distance is less than δ,
which is true if and only if x2 + y2 < δ2. Let A denote the circular region defined by
x2 + y2 < δ2 so that dδ((0, 0), (x, y)) < δ if and only if (x, y) is in A. Note that if
(x, y) is outside A, dδ((0, 0), (x, y)) = δ.

Let B1 be the set of boundary points of C defined by y = 1
2 ,

−1
2 ≤ x ≤ 1

2 . By defi-
nition of the delta metric, dδ((x, y), B1) < δ if and only if dE((x, y), B1) < δ, which
is true if and only if 1

2 − y < δ, or equivalently y > 1
2 − δ. Since (x, y) is in C, y < 1

2 .
Thus, dδ((x, y), B1) < δ if and only if (x, y) is in the strip defined by −1

2 ≤ x ≤ 1
2

and 1
2 − δ < y ≤ 1

2 . Similar strips along the other three sides of C describe regions in
which points are closer to an edge of C than to the center of C. Let T denote the union
of these strips. Then T is the frame shaped region between the square C and the smaller
square C′, centered at the origin with sides parallel to the axes and intersecting each
axis at ± ( 1

2 − δ
)
. Note that if (x, y) is inside C′, then the delta distance from (x, y) to

any edge is δ. The regions A, T, and C′ are shown in Figure 8 with three different values
of δ. So that this new metric can be compared with the usual Euclidean metric from the
original Problem 1, each of the images in Figure 8 also shows the region from Figure 1.

We now consider three cases.
Case 1: 0 < δ ≤ 1

4 . In this case δ ≤ 1
4 ≤ 1

2 − δ, and thus the circular region A does
not intersect the frame-shaped region T (see the top image in Figure 8). Points in A are
less than δ units away from the center of the square, but are exactly δ units from every
edge. On the other hand, if (x, y) is outside A, then dδ((0, 0), (x, y)) = δ, while the
distance from (x, y) to some edge is less than or equal to δ. Thus only the points in A
are closer to the center than to any edge, and Area(D) = Area(A) = πδ2. It is worth
noting that points that lie between the circular region A and the frame-shaped region
T are equidistant from the center and every edge, that distance being δ.
Case 2: 1

4 < δ ≤ 2−√
2

2 . The smaller square C′ will be inscribed in the circle
x2 + y2 = δ2 when half the diameter of C′ is equal to the radius of A. This hap-
pens when

√
2( 1

2 − δ) = δ, that is, when δ = 2−√
2

2 . Therefore, in this case, the cir-
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Figure 8 The downtown region using the delta metric with δ values of 1
5 , 27

100 , and 1
3 .

cular region A overlaps the frame-shaped region T, but A does not contain all of the
smaller square C′. See the middle image in Figure 8. Note that the circle x2 + y2 = δ2

intersects the line y = 1
2 − δ when x = ±

√
δ − 1

4 .

Points that are in A\T are closer to the center of C than to any edge of C. Points
that are in T\A are closer to some edge of C than to the center of C. Points that are in
neither A nor T are equidistant from the center and every edge, that distance being δ.

For points in A ∩ T, the delta distance to either the center of C or the nearest side
of C will be measured using the Euclidean distance. From the solution to Problem 1
we know that the region that consists of points that are closer, using the Euclidean dis-
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tance, to the center of square C than to its upper edge is bounded above by the parabola
y = 1

4 − x2. This parabola intersects the line y = 1
2 − δ, the upper edge of square C′,

when x = ±
√

δ − 1
4 , the same points at which the circular region A intersects that

edge. Thus points in the parabolic region bounded below by the line y = 1
2 and above

by the parabola y = 1
4 − x2 are closer to the center of C than to its top edge. Let R1

denote this region and let R be the union of R1 and three similar regions corresponding
to the other three sides of C.

Then Area(D) = Area((A ∩(C \T)) ∪ R) = Area((A ∩ C′
) ∪ R). For the purposes

of computation, note that this is simply the region A with the regions bounded by the
circle and each of the four parabolas removed. Therefore

Area(D) = πδ2 − 8
∫ √

δ− 1
4

0

(√
δ2 − x2 −

(
1

4
− x2

))
dx

= πδ2 − 4δ2 sin−1

⎛
⎝
√

δ − 1
4

δ

⎞
⎠+

√
δ − 1

4

(
2

3
+ 4

3
δ

)
.

Note that if δ = 1
4 , this gives the same result as for δ = 1

4 in case 1.

Case 3: 2−√
2

2 < δ ≤ 1
2 . Recall from case 2 that when δ = 2−√

2
2 , the smaller square C′ is

inscribed in the circle x2 + y2 = δ2. Therefore, when δ > 2−√
2

2 , the square C′ is com-
pletely contained in the circular region A. From the solution to Problem 1, we know

that the parabolas y = 1
4 − x2 and x = 1

4 − y2 intersect at the points
(√

2−1
2 ,

√
2−1
2

)
.

The distance from this point to the origin is 2−√
2

2 and so when δ > 2−√
2

2 , the parabolic
region shown in Figure 1 is also contained in the circular region A. See the bottom
image in Figure 8.

Points that are in A\T are closer to the center of C than to any edge of C since
the distance to the origin would be less than δ and the distance to any edge would be
exactly δ. In this case, A\T consists of all points in the smaller square C′. By a similar
argument, points that are in T\A are closer to some edge of C than to the origin. For
points in A ∩ T, the delta distance from the point to the center of C and the distance
from the point to some edge of C are equal to the corresponding Euclidean distance.
Therefore, from the solution to Problem 1, we know that points in A ∩ T will be closer
to the center of A than to any side of A if and only if they lie in the region bounded
by the four parabolas y = ±( 1

4 − x2
)
, x = ±( 1

4 − y2
)
. Since this region contains the

smaller square C′, the area we are looking for is the same as the area in Problem 1,
namely Area(D) = 4

√
2−5
3 .

Summarizing, we have the following solution.

Answer 9. The relative size of the downtown region in the two-dimensional city C
using the δ-metric depends greatly on the value of δ. In particular,

S(2, dδ) =

⎧⎪⎪⎨
⎪⎪⎩

πδ2, 0 < δ ≤ 1
4

πδ2 − 4δ2 sin−1

(√
δ− 1

4
δ

)
+
√

δ − 1
4

(
2
3 + 4

3δ
)
, 1

4 ≤ δ ≤ 2−√
2

2

4
√

2−5
3 , 2−√

2
2 < δ ≤ 1

2

.

As with the Euclidean and taxicab metrics, one can generalize Problem 9 to three
dimensions. The details can be worked out as in the two-dimensional solution, again
with three cases determined by the value of δ. We state the problem and answer here,
leaving the details to the reader.
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Problem 10. Let C be a cube in R
3 with side length 1 and let δ be a real number

satisfying 0 < δ < 1
2 . Define the delta metric on R

3 by dδ(a, b) = min{dE(a, b), δ}.
What is the relative size of the downtown region in C using the delta metric. That is,
find S(3, dδ).

Answer 10. The relative size of the downtown region in the three-dimensional city C
using the δ-metric is given by,

S(3, dδ) =

⎧⎪⎨
⎪⎩

4
3πδ3, 0 < δ ≤ 1

4
4
3πδ3 + π

[− 1
2 (4δ2 − 2δ + 1)(4δ − 1) + 3δ

(
δ − 1

4

)]
, 1

4 < δ ≤ 3−√
3

4

π+4−5
√

3+(1+√
3)
√

2+√
3

8
4 , 3−√

3
4 < δ ≤ 1

2

.

Not all metrics that are bounded by some δ < 1 give new answers to Problem 2.
For example, if a, b, c are positive real numbers, then d(x, y) = a dE (x,y)

b+cdE (x,y)
is a metric

on R
2 that is bounded, on the unit square, by a

b+c . However, no matter how small a
b+c

is, using this metric gives the same answer to Problem 2 as when using the Euclidean
metric. We conclude this section with a couple of questions.

Question 11. Do other bounded metrics give interesting solutions to Problem 2? What
is the relative size of the downtown region in a hypercube-shaped city in R

n using the
delta metric? That is, find S(n, dδ).

A discrete variation

Suppose that our two-dimensional square city is overlaid with an r × r grid, as most
cities are divided into blocks, and that a business is situated at each lattice point, that is,
intersection. How many businesses are in the downtown region? This discrete version
of Problem 2 is analogous to a famous problem of Guass (see, for example [3]) in
which he asks how many integer lattice points are contained within a circle of radius n.

Problem 12. Let r be a positive real number and let C be an r × r square in R
2

centered at the origin with edges defined by y = ± r
2 and x = ± r

2 . If a business is
situated at every integer lattice point and distances are measured with the Euclidean
metric, how many businesses are in the downtown region?

Arguing as in Problem 1, one easily sees that the answer to Problem 12 is the
number of lattice points that are in the region D bounded by the four parabolas

defined by the inequalities y < r
4 − x2

r , y > − r
4 + x2

r , x < r
4 − y2

r , and x > − r
4 + y2

r .
Also as in Problem 1, this region D comprises a smaller square C′ with vertices at(
± r(

√
2−1)

2 , ± r(
√

2−1)

2

)
along with four parabolic regions, one appended to each side of

C′. We now count the integer lattice points within D. For convenience, set α = r(
√

2−1)

2 .
We first consider the number of integer lattice points within C′. Fix an integer a

with −α ≤ a ≤ α. On the portion of the line x = a with y greater than 0 and less
than α, there are precisely �α� points (a, y) with y an integer. There are the same
number of points (a, y) with y an integer along the line x = a with y-value between
−α and 0. Thus, including the origin, there are 2 �α� + 1 integer lattice points within
the small square C′ and on the line x = a. Since a was an arbitrarily chosen integer
with −α ≤ a ≤ α, the number of integer lattice points inside C′ is (2 �α� + 1)2 .

We now consider the integer lattice points in the region bounded by y = α and
y = r

4 − x2

r , that is, in the portion of D above C′. Note that the line defined by y =
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α intersects the parabola defined by y = r
4 − x2

r at the points (±α, ±α). The set of
integers in the interval [−α, α] is

I = {�−α� , �−α� + 1, �−α� + 2, . . . , 0, . . . , �α� − 2, �α� − 1, �α�} .

For each n ∈ I , if r
4 − n2

r is an integer, then
⌈

r
4 − n2

r

⌉
= r

4 − n2

r and the point(
r
4 − n2

r , n
)

is equidistant from the center and the edge defined by y = 1
2 and should

not be included in our count (since we are only interested in points closer to the
center than to any edge). Thus, for each n ∈ I , the number of integer lattice points

between y = α and y = r
4 − x2

r on the line defined by x = n is
⌈

r
4 − n2

r

⌉
− 1 − �α�.

Thus the number of integer points in the region bounded by y = α and y = r
4 − x2

r is
�α�∑

n=�−α�

(⌈
r
4 − n2

r

⌉
− 1 − �α�

)
. Identical counts are obtained for each of the remaining

three parabolic regions. Now summing the number of integer lattice points within C′

and within each of the four parabolic regions, we obtain the following solution.

Answer 12. In an r × r city divided into blocks, if there is a business at each inter-

section, there are precisely (2 �α� + 1)2 + 4
�α�∑

n=�−α�

(⌈
r
4 − n2

r

⌉
− 1 − �α�

)
businesses

within the downtown region.

We give a list of the first 25 terms in the sequence given by the number of points
inside a square of integer side length r that are closer to the center than to any edge

1, 1, 1, 1, 9, 9, 9, 9, 21, 25, 25, 25, 37, 45, 49, 49, 69, 69, 77, 81, 101, 109, 117, 117, 141.

As with Gauss’s circle problem, we cannot obtain a closed form for the number of
integer lattice points closer to the center of a square than to any side. In fact, finding
the order of the error term to a polynomial approximation to Gauss’s problem is of
great interest (cf. [3]). However, we can easily obtain a closed form asymptotically. By
placing a unit square (with sides parallel to the coordinate axes) around each integer
lattice point in D, we see that the number of integer lattice points closer to the center
of C than to any side is approximated by the area of D. By appropriately scaling the

calculations from Problem 1, we see that the area of region D is r 2
(

4
√

2−5
3

)
. Since

the area of the square C is r 2, as r grows larger, the ratio of the number of integer
lattice points in D to the number in C approaches 4

√
2−5
3 . Already at r = 25, the ratio

is 141
252 = 0.22564 while 4

√
2−5
3 ≈ 0.21895.

Question 13. Gauss’s circle problem can be generalized to higher dimensions, as can
Problem 12. If C is an n-dimensional hypercube-shaped city with side length r and
downtown region D, how many businesses are in D? If distances are measured with a
different metric, how many businesses are in D?
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How to play. Place one jamb (|), two jambs (||), or three jambs (|||) in each empty
cell. The numbers indicate how many jambs there are in the surrounding cells—
including diagonally adjacent cells. Each row and each column has 10 jambs. Note
that no jambs can be placed in any cell that contains a number.

The solution is on page 266.
—contributed by Lai Van Duc Thinh
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Proof Without Words: Triangular Sums and
Perfect Quartics
CHARLES F. MARION

Yorktown Heights, NY 10598
charliemath@optionline.net

1 + 15 = 42 = 24

15 + 66 = 92 = 34

66 + 190 = 162 = 44

...

T (n) = 1 + 2 + . . . + n ⇒ T (n2 + n − 1) + T (n2 + 3n + 1) =
(
(n + 1)2

)2
= (n + 1)4

For example, for n = 3,

n

n

n2 + n – 1

n2 + 3n + 1

(n + 1)2

(n + 1)2

n2 + 3n + 1

Summary. It is well known that the sum of two consecutive terms from the sequence of triangular numbers is a
perfect square. We show that the sum of two consecutive terms from a subsequence of that sequence is a perfect
quartic.
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Do you know the name “Regiomontanus”? You undoubtedly know his problem. What
is the optimal place to stand to view a painting? The usual assumptions are in effect,
namely, the painting hangs on a wall above eye level, and optimal refers to maximiz-
ing the angle from the observer’s eye. The problem is ubiquitous in modern calculus
books, but Regiomontanus, born Johann Müller (1436-76) in Königsberg, formulated
the problem in 1471, some 200 years before the discovery of calculus. Not surprisingly
then, the first known solution is geometric and is shown in Figure 1. A circle is drawn
passing through the top and bottom of the painting, tangent to the horizontal line at
eye level. The point of tangency is the optimal point. That the so-constructed angle is
maximal follows from the intersecting secants theorem in geometry. It isn’t known if
Regiomontanus found the solution. A careful construction is a nontrivial Appolonian
problem. See [3], [5], and [6] for additional background. Modern calculus students
(and mathematicians) are routinely asked to solve the Regiomontanus problem. What-
ever their solution, if it involves a derivative, critical points, etc., it reveals nothing of
the original geometry. What follows is an approach that uses ideas from differential
geometry to connect the calculus-based solution to the geometric.

A

B

U

Painting

Figure 1 Geometric solution of the Regiomontanus problem.

A more general problem The Regiomontanous problem is a special case of a more
general angle-maximization problem. Consider two points A and B, where A = (0, a)

is on the positive y-axis and B = (c, b) where c ≥ 0 and b ≤ a. The latter condition is
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without loss of generality, for we could translate B to the y-axis and reflect the figure
through the y-axis to place the points in the desired configuration. The problem is to
find the point U = (u, 0) on the x-axis such that θ = ∠AUB is maximal. A specific
case of the angle-maximization problem appears in [8], with values a = 5, b = 2,
c = 3, and u restricted to [0, 3]. Unlike that problem, we seek the global maximum of
θ over the entire real line.

To start, we need an expression for θ . There are four cases depending on the location
of U , though a single calculation covers them all. Throughout, the points A and B are
fixed. Figure 2 illustrates the four possibilities.

Case 1 Angle θ when U lies to the left
of O (origin).

Case 2 Angle θ when U lies between
O and C.

A (0, a) A (0, a)

B (c,  b)

U (u, 0) U (u, 0)C (c, 0) C (c, 0)

B (c, b)

O O

α′ α′

β β
β′ β′

α α
θ θ

Case 3 Angle θ when U lies between
C and the x-intercept, D , of the line
AB.

Case 4 Angle θ when U lies to the
right of D.

A (0, a)
A (0, a)

B (c, b)
B (c, b)

C (c, 0) C (c, 0) D (ac/(a-b), 0)U (u, 0) U (u, 0)O O

α′

β′
α β

θ
β′

θ
α β

α′

Figure 2 The four cases.

With the angles labeled as shown in the figures, we seek to maximize θ where, pro-
ceeding sequentially through the cases,

θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α − β = (
π

2 − α′) − (
π

2 − β ′) = β ′ − α′ = tan−1
(

c−u
b

) − tan−1
(−u

a

)
if u ≤ 0,

π − α − β = (
π

2 − α
) + (

π

2 − β
) = α′ + β ′ = tan−1

(
u
a

) + tan−1
(

c−u
b

)
if 0 ≤ u ≤ c,

β − α = (
π

2 − β ′) − (
π

2 − α′) = α′ − β ′ = tan−1
(

u
a

) − tan−1
(

u−c
b

)
if c ≤ u ≤ ac

a−b ,

α − β = (
π

2 − α′) − (
π

2 − β ′) = β ′ − α′ = tan−1
(

u−c
b

) − tan−1
(

u
a

)
if ac

a−b ≤ u < ∞.

Note, in every case, the expression for θ is the same, with the exception of Case 4,
where θ is the negative of the others. As we are interested only in the magnitude of θ ,
this minor detail has no bearing on the calculations and solution that follow.

For definiteness, we consider Case 2. Computing the derivative of θ with respect to
u we get

θ ′ = 1

1 + (
u
a

)2

(
1

a

)
+ 1

1 + (
c−u

b

)2

(
−1

b

)
= a

a2 + u2
− b

b2 + (c − u)2
.
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Setting this equal to zero and simplifying, we get

b(a2 + u2) = a(b2 + (c − u)2). (1)

Solving, we get

u =
ac ±

√
ab

(
(a − b)2 + c2

)
a − b

.

Let

u− =
ac −

√
ab

(
(a − b)2 + c2

)
a − b

and u+ =
ac +

√
ab

(
(a − b)2 + c2

)
a − b

.

Clearly, u+ ≥ ac
a−b , and it is straightforward to show that u− ≤ c. Hence, (u+, 0) lies to

the right of D (not shown in Cases 1, 2), while (u−, 0) lies to the left of C . Referring
to any of the figures, the graphical evidence suggests that θ obtains a local maximum
value when u = u+ but obtains a global maximum value when u = u−. We prove
this below but in a geometric way. In the Regiomontanous problem, c = 0, in which
case u = ±√

ab. Owing to the symmetry in this case, both points provide θ with its
maximum value. While the calculus-based solution is complete, it reveals nothing of
the underlying geometry of the problem. It is here that we make a departure.

Calling on differential geometry Up to this point, we kept A and B fixed and
allowed U to vary. Now fix A and U , and allow B to vary. To emphasize that B is
a variable point, relabel its coordinates from (c, b) to (x, y). With this change, equa-
tion (1) becomes

y(a2 + u2) = a(y2 + (x − u)2). (2)

Now we reason “backwards.” If u is fixed, (2) defines the circle (x − u)2 +
(

y− a2+u2

2a

)2

=
(

a2+u2

2a

)2
. This circle represents the set of points B such that U = (u, 0) is the opti-

mizing point. The situation is shown in Figure 3.

A (0, a)

B (x, y)

U (u, 0)O

θ

Figure 3 With A and U fixed, the circle is the set of points B for which U is the opti-
mizing point.
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Thus, the circle has center
(

u, a2+u2

2a

)
, radius a2+u2

2a , and is tangent to the x-axis at

U = (u, 0). Also, note that the circle passes through point A. As u varies through all
real values, we get a family of such circles, as shown in Figure 4.

Figure 4 Family of circles through common point A (not labeled for clarity), tangent to
the x-axis.

In Figure 4, every circle passes through A and is tangent to the x-axis. Furthermore,
regarding the coordinates of the center of a circle in the family as a set of parametric
equations, the centers lie on the parabola y = a2+x2

2a . It is clear that the family has an
envelope, namely, the x-axis and point A. We digress briefly to discuss envelopes and
describe the special relationship between our family of circles, their envelope, and the
parabola of centers.

Envelopes Under mild conditions, a family of curves will have an envelope that, in
general, is a visible feature of a plot of the family. Often (but not always) the envelope
is a curve that, at each point, is tangent to a (different) member of the family. The
reference [1] has a particularly complete description of envelopes. We give a definition
here that indicates how to calculate them.

Definition. Let F(t, x, y) = 0 define a family of smooth curves (F is a smooth real-
valued function). The envelope E of the family is given by the simultaneous solution
of the equations F(t, x, y) = 0 and ∂

∂t F(t, x, y) = 0. That is,

E = {(x, y) : there exists t such that F(t, x, y) = ∂

∂t F(t, x, y) = 0}.

In the present case, the family of circles is given by the equation F(t, x, y) = 0 where

F(t, x, y) = (x − t)2 +
(

y − a2 + t2

2a

)2

−
(

a2 + t2

2a

)2

.

Finding the envelope requires the simultaneous solution of the equations F = ∂

∂t F = 0.

That is,

(x − t)2 +
(

y − a2 + t2

2a

)2

−
(

a2 + t2

2a

)2

= 0,

x + t

a
y − t = 0.

Solving for x and y, we get x = t, y = 0, which is the x-axis, and the single point
(0, a), which is point A.
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In fact, the result here is well known in the study of planar curves. The envelope
of a family of circles centered on a curve γ (t) and passing through a common point
P consists of the singleton {P} along with a curve, known as the orthotomic of γ,

relative to P. Thus, the x-axis is the orthotomic of the parabola y = a2+x2

2a , relative to
A. As described in [1], the orthotomic of a curve γ, relative to a point P, can also be
realized as the reflection of P through the tangents of γ. This allows us to compute
a closed formula for the orthotomic, namely φ(t) = P + 2((γ − P) · N) N where N
is the unit normal vector of γ and P is the position vector of P . Substituting directly
into this formula confirms the result above, namely, φ(t) = 〈t, 0〉 . For completeness,
we mention that since the x-axis is the orthotomic of the parabola y = a2+x2

2a , relative
to A, then the parabola is the antiorthotomic of the x-axis, relative to A. We return to
this idea later.

Summarizing the developments, after setting up a formula for θ and differentiat-

ing with respect to u, we arrive at the condition (x − u)2 +
(

y − a2+u2

2a

)2
=

(
a2+u2

2a

)2

where x and y are in place of c and b, respectively. For fixed u, this is a circle centered

at
(

u, a2+u2

2a

)
on the parabola y = a2+x2

2a and passing through A. In addition, it is tan-

gent to the x-axis at U = (u, 0). This circle represents the set of all points B for which
U is the optimizing point. As u varies, we get a family of circles whose envelope is
the orthotomic of the parabola, namely, the x-axis, along with point A. We apply these
results to the maximum angle problem.

The solution Start from the beginning, where A = (0, a) and B = (c, b) are fixed.
As before, assume c ≥ 0 and b ≤ a. We claim there are exactly two members of the
family of circles described above that pass through A and B, and are tangent to the
x-axis. To show this, plot the antiorthotomic of the x-axis relative to A, which is the
parabola y = a2+x2

2a . Construct the perpendicular bisector of the segment AB. The inter-
section of this bisector with the antiorthotomic gives the center of a circle from the
family. In particular, the circle with this center, passing through A and B, will be tan-
gent to the x-axis, thanks to the way in which the antiorthotomic was constructed.
Figure 5 illustrates the result. That there are two such circles comes from the fact that
B lies above the x-axis. As a result, the perpendicular bisector of AB intersects the
parabola in exactly two points. The only instances in which the bisector fails to inter-
sect the parabola twice is when B lies below the x-axis (no intersection) or when B lies
on the x-axis (the bisector is tangent to the parabola). Figure 6 illustrates the full result
(two circles). Call the two circles C1 and C2, where C1 is the leftmost (the smaller of
the two). The critical points of θ are u1 and u2 where U1 = (u1, 0) and U2 = (u2, 0)

are the points of tangency of C1 and C2 with the x-axis, respectively. Note, u1 and u2

are the former u− and u+, respectively, calculated from equation (1).
The last remaining detail is to determine which of the two critical points provides

the global maximum for θ . The answer is u1. Since the perpendicular bisector of AB
has positive slope (except when c = 0, in which case both u1 and u2 provide the global
maximum), the y-coordinate of the center of C1 is less than that of the center of C2.
Consequently, the radius of C1 is less than that of C2. Both critical points subtend arcs
from A to B on their respective circles. Refer to Figure 6. From standard Euclidean
geometry, e.g., see [3] for results about circles and inscribed angles, m∠AU1 B =
m∠AGB, and m∠AU2 B = m∠AHB. Then, comparing the isosceles triangles 
AGB
and 
AHB, the latter has legs whose (equal) length is greater than that of the former
(since C2 has larger radius), yet they share the same base. Hence, m∠AGB > m∠AHB.
That is, θ1 > θ2.
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A (0, a)

B (c, b)

U (u, 0)O

θ

Figure 5 The intersection of the perpendicular bisector of AB with the parabola locates
the center of one member of the family of circles through A and B and tangent to the
x-axis. In turn, this locates a critical point u of θ .

U1

C1

C2

U2

B

G

A

H

θ2

θ2θ1

θ1

Figure 6 The perpendicular bisector of AB intersects the parabola twice, resulting in
identification of the two circles from the family of circles through A and B and tangent
to the x-axis. In turn, this locates the two critical points, u1 and u2 of θ .

Return to the Regiomontanus problem The geometric solution of the Regiomon-
tanus problem described at the start of the paper is contained within our general result.
Letting c = 0, points A = (0, a) and B = (0, b) are on the y-axis and represent the
upper and lower edge of a painting, respectively. Construct the perpendicular bisec-
tor y = a+b

2 of AB and intersect it with the antiorthotomic (parabola). As above, the
contending points U1 and U2 lie on the x-axis directly below the intersections. By the
symmetry in this case, both points yield the same maximal angle θ , as in Figure 7. For
the given parameters, U = (±√

ab, 0).



VOL. 90, NO. 4, OCTOBER 2017 265

C1 C2

U1 U2

B

A

θ θ

Figure 7 The solution of the Regiomontanus problem is a special case of a more general
angle-maximization problem.

The method described here connects the analytic (calculus) solution of the
Regiomontanus problem (as a special case of a more general angle-maximization
problem) with the geometric. Neither solution, alone, suggests the other. The methods
of differential geometry, namely, families of curves and envelopes, provide a link
between the two. Readers may be interested in the variants of the Regiomontanus
problem in [2] and [7], though [7] is a restatement of [2], and both are restatements of
the problem in [4].
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Summary. The Regiomontanus problem is that of determining the optimal place to stand to view a painting.
The problem, which predates calculus by some 200 years, appears in most modern calculus books, though isn’t
known by that name. The original solution was purely geometric, the optimality following from the well-known
intersecting secants theorem. Modern treatments are analytic, using calculus, but none of the underlying geometry
(or its original solution) is apparent. In this paper, we generalize the problem and unite the two solutions using
parametric curves and results from differential geometry.
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Figure 1 Hendrick van Vliet, Interior of the Oude Kerk, Delft, 1660.

You are in the Metropolitan Museum of Art in New York, and you come across Hen-
drick van Vliet’s Interior of the Oude Kerk, Delft, 1660 [14]. Through his skilled use
of perspective, van Vliet seems eager to make you feel as though you were actually
there in the Oude Kerk, the oldest building still standing in Amsterdam. A perspective
painting done with mathematical accuracy will act like a window to the 3-dimensional
world, but you need to be standing where the artist stood to get this window effect.

As Leonardo da Vinci wrote in his notebooks, the spectator will see “every false
relation and disagreement of proportion that can be imagined in a wretched work,
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unless the spectator, when he looks at it, has his eye at the very distance and height
and direction where the eye or the point of sight was placed in doing this perspective”
(543, [9]). So how do we find this “point of sight”? Your instinct may be to stand
directly in front of the center of the van Vliet painting. However, according to our
measurements, you will need to stand with your eye about 2/3 of the way down far
over to the left, nearly at the edge of the painting, back about the length of the height
of the painting.

Although the painting is still realistic and impressive when viewed from other loca-
tions, without knowledge of the “point of sight” more commonly known as the view-
point, it would be difficult to experience the spacious depth of the centuries-old church.
Thus, we offer this article as a proposal to curators and museums to consider identify-
ing the viewpoints of several perspective paintings in their collections and present the
information in a format that helps visitors appreciate the art from the intended angle.
We review several known geometric methods, simplify a known algebraic method,
and use the insights gained from the simplification to introduce a new method which
we call the perspective slope method, a satisfying blend of geometric and algebraic
techniques.

Background

To determine the odd viewpoint for van Vliet’s painting, we first notice that two main
sets of lines parallel in the Oude Kerk appear to go to two different vanishing points,
to the left and right of the painting as in Figure 2. This tells us that the painting is
done in two-point perspective. Compared to a painting done in one-point perspective,
this makes our job considerably harder (for more on finding the viewpoint of one-
point perspective drawings along with the mathematics of perspective drawing, we
recommend Frantz and Crannell’s Viewpoints [5]).

V1 V2

Figure 2 Two-point perspective.

Over the centuries, several mathematicians have solved the problem of finding the
viewpoint for two-point perspective for special cases, Simon Stevin (1605), Johann
Heinrich Lambert (1759), and most notably, Brook Taylor of Taylor series fame, who
gave several solutions in his two books on linear perspective (1715, 1719). A readable
account of the history of what is known as the inverse problem of perspective is found
in Andersen’s book on the history of mathematical perspective [1]. A more modern,
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related problem in computational projective geometry involves determining the exact
location of a camera using on-site measurements and clues given in a photograph,
called “camera calibration” or “camera resectioning.” Devotees of THIS MAGAZINE

may remember two articles written on this topic, “Where the Camera Was” by Byers
and Henle [2] and “Where the Camera Was, Take Two” by Crannell [3], which respec-
tively discussed an algebraic and a geometric approach to the problem.

The geometric methods

The standard geometric method described in [5] uses semicircles to find the viewpoint,
as shown in Figure 3. There is no need for measurement or computation, but as we shall
see, this method can sometimes be impractical.

V1 V2

d

P Q
RS

T V ′2V ′1

Figure 3 Finding the viewpoint for two-point perspective.

The first step is to identify a four-sided figure in the painting, such as PQRS in
Figure 3, which we know or can reasonably assume to be a square on the ground or
in a plane parallel to the ground drawn in perspective. The two pairs of opposite sides
of the square are parallel in the real world and not parallel to the canvas “window,”
which we call the picture plane, so their perspective images intersect at the principal
vanishing points V1 and V2 along the horizon line. The diagonals of our square are also
not parallel to the picture plane, and so their perspective images have vanishing points
V ′

1 and V ′
2 along the horizon line.

The next step is to draw two semicircles, one with diameter v = V1V2 and another
with diameter v′ = V ′

1V ′
2, and find their intersection point. Through that intersection

point, we draw a line orthogonal to the horizon line. The viewpoint is then determined
by placing your eye directly in front of T as shown in Figure 3 at a distance d from
the painting.

To understand why this works, let’s float above the scene, to get the bird’s eye
view. We would see the viewer (or the viewer’s eye) at O , the picture plane seen as a
horizontal line, and the undistorted square, as in Figure 4. We can now see the distance
from the viewer to the picture plane d and the point T on the picture plane directly in
front of the viewer’s eye.

V1 is the vanishing point of the image of the line PQ. To understand how to find
V1 on this top view, consider a point X on line PQ. Its image X ′ is located on the
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V1 V2X ′

d

P

X

Q

O

R

S

T

“viewer’s eye”

(Image of X on
the picture plane)

V ′1 V ′2

Figure 4 Bird’s eye view.

picture plane where the sight line from the viewer’s eye O to the point X intersects
the picture plane. As we pull X off towards the left, X ′ is also pulled along the line of
the picture plane towards the left. Notice that X ′ will converge to the point where the
viewer can no longer see the line PQ, i.e., where the line parallel to PQ intersects the
picture plane. So this must the the vanishing point V1. Similarly, we can find the other
vanishing points.

Since the sight lines to the principal vanishing points (indicated as the dashed lines
in Figure 4) form a right angle as do the sight lines to the diagonal vanishing points
(indicated as the dotted lines in Figure 4), we can use Thales’ theorem for triangles
inscribed in a semicircle to draw two semicircles between the vanishing points. We find
the viewer’s eye at the intersection of the semicircles, which determines the viewing
distance d and viewing target T .

So in summary, the standard geometric method is as follows:

1. Find the vanishing points V1, V2, V ′
1, and V ′

2 along the horizon line.

2. Draw the semicircles with diameters v = V1V2 and v′ = V ′
1V ′

2.
3. Find the intersection of the semicircles, and drop a line down perpendicular to the

horizon line to find T , the point that should be directly in front of your eye.
4. The distance between the intersection and the horizon line is d, how far back from

the painting you should stand.

Generally, this is a good method. Finding a square in the painting can sometimes
be easy, for example, if there is a tiled floor. In van Vliet’s painting, it’s more difficult.
The floor is tiled, but we know that the tiles in the Oude Kerk are not square (it should
be remarked that all of these techniques generalize to a more general parallelogram
situation, but you will need to know the angles and ratios of lengths). We decided to
use the base of the front column, which we can reasonably assume is a square with
the corners cut off for the following reason. The walls of the Oude Kerk are at 90
degree angles, and the two lines along the base vanish at the same vanishing points
as the perpendicular lines along the walls as seen in Figure 2, hence are perpendicular
themselves. We can reasonably assume that the columns have a circular rather than an
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oval cross section, so we can conclude that the base is square with the corners cut off.
If we apply the geometric method to the van Vliet painting using this square, we find
that V ′

2 is located to the left of the painting, and it is quite a distance away from the
other vanishing points as you can see in Figure 5.

V1 T V2

d

V ′2 V ′1

Figure 5 The standard geometric method for van Vliet’s painting.

β = 90°

α = 90°

V1 T V2

d

V ′1

Figure 6 Taylor’s method.

Taylor [10, 1] and Lambert [8, 1] provide two alternatives, which do not require the
distant V ′

2 vanishing point. As shown in Figure 6, Taylor suggests we draw two right
isosceles triangles with hypotenuses V1V ′

1 and V ′
1V2, respectively, then draw circles

using the apexes as the centers and the legs of the triangles as the radii. The intersection
of these two circles will be exactly where the intersection of the semicircles was in
the previous method, thus giving us T and d. If you are able to draw right isosceles
triangles and circles, this is not a bad alternative. Lambert gives us yet another alternate
method, as shown in Figure 7. Again, it only requires three vanishing points, however,
you have to be able to determine where the lines form a 45 degree angle.
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α = 45°

V1 T V2

d

V ′1

Figure 7 Lambert’s method.

The algebraic method

Since we can find T and d by finding the intersection of two circles, we can surely find
an algebraic formula for T and d. Indeed, this was done by Greene [6] who came up
with a rather complicated formula which we will describe at the end of this section.
We provide here a simplified version of Greene’s formula whose setup and derivation
provide insight into our new perspective slope method. For details on the calculations,
we refer readers to the supplementary document at http://www.maa.org/sites/
default/files/pdf/pubs/mm_supplements/Futamura-Lehr-appendix.pdf

In Figure 8 we superimpose a coordinate system with the horizon line as the x-axis
in order to describe the semicircles algebraically. The ratio of the distances between
the principal vanishing points and the diagonal vanishing point between them becomes
quite important, so we shall denote this ratio as ρ = vL

vR
, where vL is the distance on

the left (between V1 and V ′
1) and vR is the distance on the right (between V ′

1 and V2).

L

L R

R

V1 V2V ′1 V ′2

Figure 8 The algebraic method.

http://www.maa.org/sites/default/files/pdf/pubs/mm_supplements/Futamura-Lehr-appendix.pdf
http://www.maa.org/sites/default/files/pdf/pubs/mm_supplements/Futamura-Lehr-appendix.pdf
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Theorem 1. Let t be the distance from the leftmost principal vanishing point to the
viewing target and d the viewing distance. Then

t = ρ2v

ρ2 + 1
and d = ρv

ρ2 + 1
= t

ρ
,

where ρ = vL
vR

and v = vL + vR.

Proof. Consider Figure 8. The equations for the semicircles are

(
x − v

2

)2
+ y2 =

(v

2

)2
and

(
x −

(
vL + v′

2

))2

+ y2 =
(

v′

2

)2

.

To find t , the distance to the viewing target, we need to find the x-value of the
circles’ intersection point, so we subtract one equation from the other and solve for x .
We find that

x = vL(vL + v′)
vL − vR + v′ . (1)

In order to write (1) entirely in terms of vL and vR , we use what is known as the
cross ratio. A cross ratio of four points along a line, A, B, C and D, is the following
product of ratios of directed distances:

×(ABC D) = |AB|
|BC |

|C D|
|D A| ,

where a distance becomes directed by choosing a direction for a line, for example, a
positive direction from A to B, so that the directed distance |AB| is positive and |B A|
is negative. There are some very nice properties of the cross ratio, most notably that
it is invariant under projections. For more on cross ratios, see [4]. The property that is
most important for us here is that ×(V1V ′

1V2V ′
2) = −1.

To see this, notice that the four-sided figure PQRS along with its two pairs of oppo-
site sides and its diagonals (the third pair of opposite sides) form what is known as
a complete quadrangle, with three diagonal points V1, V2, and the intersection of the
diagonals. By definition, a set of four collinear points is a harmonic set if there exists
a complete quadrangle such that two of the points are diagonal points and the other
two points are on the opposite sides determined by the third diagonal point. Hence the
two principal vanishing points and the two diagonal vanishing points form a harmonic
set, denoted H(V1, V2; V ′

1, V ′
2). It is well known that the cross ratio of a harmonic set

equals −1. Thus, we have

× (V1V ′
1V2V ′

2) = |V1V ′
1|

|V ′
1V2|

|V2V ′
2|

|V ′
2V1| = vL

vR
· v′ − vR

−v′ − vL
= −1. (2)

Solving for v′ in (2), we find

v′ = 2vLvR

vL − vR
. (3)

Going back to our equation (1) and substituting in (3) gives

x =
vL

(
vL + 2vL vR

vL −vR

)
vL − vR + 2vL vR

vL −vR

= v2
L(vL + vR)

v2
L + v2

R

=
(

vL
vR

)2(vL + vR)

(
vL
vR

)2 + 1
= ρ2v

ρ2 + 1
= t.



274 MATHEMATICS MAGAZINE

Solving for the y-value of the intersection point gives d from

y2 =
(v

2

)2
−

(
ρ2v

ρ2 + 1
− v

2

)2

= v2

4

(
2ρ2

ρ2 + 1

) (
2

ρ2 + 1

)
= v2ρ2

(ρ2 + 1)2
.

Taking the positive solution, we get

d = vρ

ρ2 + 1
= t

ρ
.

The algebraic method is as follows:

1. Find the vanishing points V1, V2, and V ′
1 along the horizon line.

2. Measure vL and vR , and calculate ρ = vL
vR

and v = vL + vR .

3. Calculate t = ρ2v

ρ2+1
= |V1T | to find the viewing target T .

4. Divide t by ρ to find the viewing distance d.

Applying the algebraic method to the van Vliet painting, ρ = 69.44
103.44 ≈ 0.67, v =

69.44 + 103.44 = 172.88. Thus t ≈ 53.71 cm and d ≈ 80.00 cm. In Figure 9 we see
where this T is located on the picture plane, and we see that it nearly coincides with
the T found using the geometric method. The small difference of approximately 0.34
cm is due to round-off error. We can make the calculation easier, by approximating
ρ ≈ 2/3 and v ≈ 173, and the simple calculation 173 · 4/13 ≈ 53.23 is still less than
a centimeter off.

V1 T

d

L  =  69.44 R  =  103.44

t = 53.71

V1T = 54.05

V2V ′1

Figure 9 The algebraic method applied to Van Vliet’s painting.

We compare this with Greene’s formula given in [6],

t = vv2
L

v2 − 2vvL + 2v2
L

, d = [vv2
L(v3 − 2v2vL + vv2

L)]1/2

v2 − 2vvL + 2v2
L

.

Instead of ρ and v, he used vL and v (denoted s and D in [6]). This version of the
formula is considerably harder to remember and harder to use.



VOL. 90, NO. 4, OCTOBER 2017 275

The perspective slope method

We come now to our new method, which we call the perspective slope method. Earlier
we mentioned that the cross ratio of a harmonic set equals −1. Let’s see what happens
when we replace the diagonal vanishing point V ′

1 with T .

× (V1T V2V ′
2) = |V1T |

|T V2|
|V2V ′

2|
|V ′

2V1| = t

t − vL
· v′ − vR

v′ + vL
. (4)

By (2), v′−vR
v′+vL

= − 1
ρ

. So using this substitution along with the formula for t in (4),
we find

×(V1T V2V ′
2) =

ρ2v

ρ2+1

v − ρ2v

ρ2+1

−1

ρ
= ρ2v

ρ2v + v − ρ2v

−1

ρ
= −ρ.

This is rather nice, so how might we use it?
To answer this question, we establish a relationship between cross ratios and the

slopes of lines on a coordinate grid drawn in perspective. Assuming P Q RS is the
perspective image of a square, we can use this to create a perspective image of a coor-
dinate grid with P Q RS as the image of one square of the grid. Assuming V1 is the
vanishing point of the x-axis and V2 the vanishing point of the y-axis, we give a sketch
of the proof below that a line with slope m in the perspective coordinate grid will
vanish at a point M such that ×(V1 MV2V ′

2) = m.

Theorem 2. Let PQRS be a complete quadrangle with associated harmonic set
H(V1, V2; V ′

1, V ′
2). Assuming that PQRS is the perspective image of a square with

the perspective coordinate grid set up as described above, a line with slope m in the
perspective coordinate grid will vanish at a point M such that ×(V1 MV2V ′

2) = m.

Sketch of Proof.
We first look at the one-point perspective situation, as in Figure 10. � will vanish at

M located d/m away from V2. This is clear from considering the top view, but details
are found in [5]. Hence, the cross ratio will be

×(V1 MV2V ′
2) = |V1 M |

|MV2|
|V2V ′

2|
|V ′

2V1| = ∞
−d/m

d

−∞ = m.

Since the cross ratio is a projective invariant, this will also hold in two-point perspec-
tive.

V1

V2

d d

P Q

RS

M
d/m

at ∞

V ′1 V ′2

Figure 10 One-point perspective situation.
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So in order to find T , we need only calculate ρ = vL
vR

, draw the line with slope −ρ,
and its vanishing point will be T ! Once you determine the location of T and measure
t = |V1T |, d = t/ρ.

So our final method is as follows:

1. Find the vanishing points V1, V2, and V ′
1 along the horizon line.

2. Measure vL and vR , and calculate ρ = vL
vR

.

3. Use your perspective drawing skills to draw a line with slope −ρ in perspective,
and find its vanishing point. This is T .

4. Divide t = |V1T | by ρ to find the viewing distance d.

In van Vliet’s painting, we approximate ρ = 0.67 by 2/3, which makes finding the
slope a bit easier. One way is to draw a 2 × 3 grid, as shown in Figure 11. Despite our
rough estimation, it does a pretty good job! The viewing distance is then roughly 3/2 of
t . In a two-point perspective painting with a tiled floor, this method is very easy to use.

V1 T V2V ′1

Figure 11 The perspective slope method applied to the van Vliet drawing.

Conclusion

We have presented a variety of methods for finding the viewpoint of a two-point per-
spective painting, each with their advantages and disadvantages. We have also found
that in many of our calculations, we used approximations that shifted our viewpoint by
a small amount. Do we have to stand with our eye “at the very distance and height and
direction” as Leonardo da Vinci suggests or do we have a little room for error? Since
the Renaissance, much research has been done on the psychology of human vision and
picture perception and the answer is more nuanced than previously thought. Regarding
being too close or too far from the picture plane, a simple geometrical analysis of the
situation tells us that the distortion is proportional to the viewing distance so we have
more room for error if the viewing distance is large. It was found in one experiment
of 12 college students in [12] that on average, they perceived a 1:1 ratio of sides of a
rectangle in perspective at 21.4 cm, although the actual viewing distance was 28 cm.
This was found to not be significantly different from the mean with a standard devia-
tion of 16.7 cm. And although the math seems to indicate that we would perceive a 2:1
ratio of sides at double the viewing distance, the same study showed that actually this
was perceived at an average of 422.1 cm with standard deviation 92.3 cm. In another
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study [7], it was shown that we compensate for a difference in viewing distance better
if the painting does not have a low eye height and does not depict a wide-angle view.
In fact, even at the correct viewpoint, we will see distortions around the periphery in a
mathematically accurate, wide-angle perspective drawing. And finally, if we are to the
left or right of the viewpoint or if we view the painting at an angle, having both eyes
open allows us to compensate for a larger difference [13].

If our eye is at the viewpoint, the research generally supports the idea that we will
have the feeling of being immersed in a 3D environment. Indeed, if you try this with the
van Vliet painting, you see the interior from the height of an average person standing
in the church, and you become suddenly aware of the people and chandelier in the far
room. The arches soar overhead and you can feel the spaciousness of the old church.
The effect is magical. Our great hope is that you will share this article with your local
museums or at the very least feel empowered to use these techniques yourself on digital
images to determine viewpoints prior to a museum visit.
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There are three things that matter in
property: location, location,
location.

Unknown. Possibly Lord Samuel of
Britain [8]

There is a lot of truth in this opening quote, especially applied to commercial real
estate. If you want your restaurant to succeed, customers have to walk through the door.

The problem

A walk on the Z2 lattice using only the steps (0, 1), which we call “North,” and (1, 0),
which we call East,” is a lattice path.

Question 1. 1. How many lattice paths begin at (0, 0) and end at (m, n)?
2. What proportion of these paths pass through the point (a, b)?

Versions of these elementary exercises appear in many introductory combinatorics
textbooks, as lattice paths provide a nice setting to explore identities involving bino-
mial coefficients. See for example [3, Chapter 4], [2, Section 3.5], [4, Section 8.5], and
[5, Section 2.6].

Solution. 1. A path from (0, 0) to (m, n) consists of m steps East, and n steps North,
and can be uniquely identified with a word of length m + n consisting of m E’s and
n N’s. Therefore, there are

(m+n
m

)
total lattice paths.

2. Every lattice path passing through (a, b) consists of two parts: a lattice path from
(0, 0) to (a, b), followed by a lattice path from (a, b) to (m, n). The number of paths
of the first type is

(a+b
a

)
and paths of the second type are in bijection with lattice

paths from (0, 0) to (m − a, n − b). Therefore, the proportion of paths passing
through (a, b) is

Fm,n(a, b) :=
(a+b

a

)(m−a+n−b
m−a

)
(m+n

m

) . (1)

This function is our main object of study. We think of the integers m and n being fixed
and therefore focus on the numerator, which we denote fm,n(a, b).

Question 2. In your town, everyone lives in one giant apartment building at (0, 0)

and works in the local factory at (m, n). For some strange reason, locals choose their
walks to work randomly among all minimal lattice paths.

Math. Mag. 90 (2017) 278–285. doi:10.4169/math.mag.90.4.278. c© Mathematical Association of America
MSC: Primary 60C05, Secondary 05A15
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1 4 10 20 35 56

6 15 24 30 30 21

21 30 30 24 15 6

56 35 20 10 4 1

Figure 1 (Left): A path of minimal length from (0, 0) to (5, 3). (Right): The number of
such paths passing through each point.

Nathan has plans to open a restaurant at some point (a, b). If you happen to pass
by on your way to work, you will buy a coffee and muffin, arriving at work caffeinated,
satisfied, and productive. If you do not pass Nathan’s, you arrive at work miserable
and tired.

Zoning regulations forbid building on the occupied vertices (0, 0) and (m, n), but
otherwise Nathan is free to choose where to locate his establishment. Where should he
open his restaurant in order to maximize the chance that people will visit?

We rephrase this question in terms of the function defined above.

Question 3. Given m, n > 0 what is the maximum value of fm,n(a, b) subject to 0 ≤
a ≤ m, 0 ≤ b ≤ n, and 0 < a + b < m + n?

Basic symmetries of binomial coefficients imply that fm,n(a, b) = fn,m(b, a) and
fm,n(a, b) = fm,n(m − a, n − b). Therefore, answering this question for m ≥ n and
subject to the additional constraint 0 < a + b ≤ m+n

2 , is enough to solve it in all
instances.

Theorem. Let m and n be positive integers with m ≥ n. The maximum value of
fm,n(a, b) subject to 0 ≤ a ≤ m, 0 ≤ b ≤ n, and 0 < a + b ≤ m+n

2 is given by
fm,n(1, 0) = (m+n−1

m−1

)
if m > n and fm,n(1, 1) = 2

(m+n−2
m−1

)
if m = n.

We say that a point (a′, b′) gives a maximum if fm,n(a′, b′) solves the optimization
problem in Question 3.

The solution we give is elementary, but not obvious. Instead of solving a two
variable optimization problem we restrict to certain single variable refinements, find-
ing maximum values by analyzing ratios of consecutive terms. We first focus on the
“square case” m = n, and use it in the proof of the general case. In the final section
we discuss connections to the Gamma function, the hypergeometric distribution, and
higher-dimensional lattice paths.

The proof

Before giving a formal proof of the theorem we give some intuition for why it is true.
Since all of our paths start at (0, 0) and end at (m, n) it seems reasonable that points
(a, b) that are close to (0, 0) or to (m, n) will have many paths passing through them.
Since the most direct path from (0, 0) to (m, n) in R

2 is given by the straight line
y = n

m x , we expect that most lattice paths do not stray too far from this line.
In order to test this intuition we consider fm,n(a, b) for some points close to the

origin, those with a + b ∈ {1, 2}. We compare these points by taking the ratio of the
corresponding function values. Suppose that n ≥ 2. Since m ≥ n, we have
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fm,n(1, 0)

fm,n(0, 1)
=

(m+n−1
m−1

)
(m+n−1

n−1

) = m

n
≥ 1.

Similarly, fm,n(2, 0) ≥ fm,n(0, 2). We also have

fm,n(2, 0)

fm,n(1, 1)
= m − 1

2n
.

Which of (2, 0) and (1, 1) has more paths passing through it depends on the ratio m−1
n ,

which is closely related to the slope of the line y = n
m x .

It is easy to check that fm,n(1, 0) ≥ fm,n(2, 0), so the only other comparison to
make is

fm,n(1, 0)

fm,n(1, 1)
= m + n − 1

2n
,

which is at least 1 except in the square case, m = n. This square case is the only
situation in which the point (1, 1) actually lies on the line y = n

m x , making up for the
fact that it is two steps from the origin instead of one.

Our goal is to make this reasoning more precise. We first prove the theorem in the
square case, which involves optimizing fn,n(a, b) restricted to two different kinds of
diagonal lines. We then use this result to prove the theorem for general rectangular
grids, inducting on the size of m − n.

The square case

Proof of the theorem (for m = n). The idea of the proof is to turn this two variable
optimization problem into a single variable one. For each k ∈ [1, 2n − 1], we find the
maximum value of fn,n(a, b) restricted to the diagonal line a + b = k. By symmetry,
we need only consider k ∈ [1, n].

Diagonals: a + b = k

Consider the set of all (a, k − a) where a ∈ [0, k]. We claim that

fn,n(a − 1, k − a + 1)

fn,n(a, k − a)
≥ 1, if and only if a ≥ k + 1

2
.

As we move along the diagonal consisting of points (k, 0), (k − 1, 1), . . . , (0, k) the
value of this function increases as we take steps “Northwest” until we cross the vertical
line a = k+1

2 . When k is odd the two points closest to the central diagonal ( k+1
2 , k−1

2 )

and ( k−1
2 , k+1

2 ) give the same maximum value. When k is even the maximum value
occurs at ( k

2 ,
k
2 ).

Consider the ratio of consecutive terms

fn,n(a − 1, k − a + 1)

fn,n(a, k − a)
= a

k − a + 1
· n − k + a

n − a + 1
. (2)

This is at least 1 if and only if

a(n − k + a) − (k − a + 1)(n − a + 1) = (n + 1)(2a − (k + 1)) ≥ 0. (3)

Since n + 1 is positive, this holds for a ∈ [
k+1

2 , k
]
.

Diagonals: a = b and a = b + 1

Since fn,n(a, b) restricted to each line a + b = k reaches a maximum either at
fn,n

(
k
2 ,

k
2

)
or at fn,n(

k+1
2 , k−1

2 ), the symmetry of fn,n(a, b) implies that we need
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1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5

70 35 15 5 1

1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5
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Figure 2 Values of f4,4(a, b). In the first plot vertices are grouped along diagonal lines
a + b = k. In the second plot vertices are group along diagonal lines b = a + k.

only show that fn,n(1, 1) is a maximum among all fn,n(a, a) for a ∈ [
1, n

2

]
and that

fn,n(1, 0) is a maximum among all fn,n(a + 1, a) for a ∈ [
0, n−1

2

]
.

We consider the ratio

fn,n(a + k, a)

fn,n(a + k + 1, a + 1)
= (a + 1)(a + k + 1)

(2a + k + 2)(2a + k + 1)
· (2n − 2a − k)(2n − 2a − k − 1)

(n − a)(n − a − k)

in the special cases k = 0 and k = 1. When k = 0, this simplifies to

(a + 1)(2n − 2a − 1)

(2a + 1)(n − a)
,

which is greater than 1 if and only if

(a + 1)(2n − 2a − 1) − (2a + 1)(n − a) = n − 1 − 2a ≥ 0.

This holds for a ∈ [
0, n−1

2

]
. When k = 1, our ratio simplifies to

(a + 2)(2n − 2a − 1)

(2a + 3)(n − a)
,

which is greater than 1 if and only if

(a + 2)(2n − 2a − 1) − (2a + 3)(n − a) = n − 2 − 2a ≥ 0.

This holds for a ∈ [
0, n−2

2

]
.

We see that the maximum value of fn,n(a, a) subject to a ∈ [
1, n

2

]
is given by

fn,n(1, 1) and that the maximum value of fn,n(a + 1, a) subject to a ∈ [
0, n−1

2

]
is given

by fn,n(1, 0). Noting that fn,n(1, 1) > fn,n(1, 0), completes the proof of the theorem
in the square case.

In our argument for the general rectangular case we require a slight refinement of
the square case.

Lemma. For n ≥ 5 the largest value of fn,n(a, b) where

(a, b) �∈ { (0, 0), (n, n), (1, 1), (n − 1, n − 1)}
is given by fn,n(1, 0).

The n ≥ 5 assumption is necessary. For n = 4 the largest value of f4,4(a, b) where
(a, b) �∈ { (0, 0), (4, 4), (1, 1), (3, 3)} is given by f4,4(2, 2) = 36 > f4,4(1, 0) = 35.
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Proof. A point (a′, b′) with 0 < a′ + b′ = k ≤ n maximizing fn,n(a, b) subject to
the conditions of the lemma either gives the maximum value of fn,n(a, b) among all
points on the diagonal line a + b = k, or has a′ + b′ = 2, in which case we note that
fn,n(1, 0) ≥ fn,n(2, 0). Therefore, we need only consider points on the diagonal lines
a = b and a = b + 1. By the analysis in the proof above, we need only consider the ratio

fn,n(1, 0)

fn,n(2, 2)
=

(2n−1
n−1

)
6
(2n−4

n−2

) = (2n − 1)(2n − 2)(2n − 3)

6n(n − 1)2
.

This is at least 1 for n ≥ 5, completing the proof of the lemma.

The rectangular case

Proof of the theorem (the rectangular case). The idea of the proof is to divide the set
of lattice paths from (0, 0) to (m, n) into two disjoint sets: paths passing through
(m − 1, n), and paths passing through (m, n − 1). If (1, 0) gives a maximum for
fm−1,n(a, b) and for fm,n−1(a, b), then we conclude that (1, 0) gives a maximum for
fm,n(a, b).

We proceed by a kind of double induction. For a given value of n we induct on m.
The case n = 0 is trivial. We give the argument for n = 1 in detail, and then adapt it to
the general situation. We compute that f2,1(1, 0) = f2,1(1, 1). Since (1, 0) gives a max-
imum for f2,1(a, b) and for f3,0(a, b), we conclude that (1, 0) also gives a maximum
for f3,1(a, b). Suppose that m ≥ 3 and that (1, 0) gives a maximum for fm,1(a, b).
Obviously, (1, 0) gives a maximum for fm+1,0(a, b), so we conclude that (1, 0) gives
a maximum for fm+1,1(a, b).

We now argue by induction on n. Suppose that for k ∈ [1, n − 1] and any m > k
we know that (1, 0) gives a maximum for fm,k(a, b). We show that (1, 0) also gives a
maximum for fm,n(a, b).
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Figure 3 Values of f6,5(a, b) (red), f5,5(a, b) (green), and f6,4(a, b) (orange). Comparing
f6,5(1, 0) and f6,5(1, 1), noting that (1, 0) gives the second largest value of f5,5(a, b) and
gives a maximum for f6,4(a, b), implies that (1, 0) gives a maximum for f6,5(a, b).

For a fixed n, the base case of our induction is to show that (1, 0) gives a maxi-
mum for fn+1,n(a, b). We verify this explicitly for n = 3 and n = 4. For n ≥ 5 we
use the result of the lemma that fn,n(1, 0) ≥ fn,n(a, b) for all pairs (a, b) satisfy-
ing 0 < a + b ≤ n except (a, b) = (1, 1). By the induction hypothesis, (1, 0) gives a
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maximum among all fn+1,n−1(a, b). Combining these facts shows that fn+1,n(1, 0) ≥
fn+1,n(a, b) for all pairs (a, b) satisfying 0 < a + b ≤ n except (a, b) = (1, 1). The
explicit computation that fn+1,n(1, 0) = fn+1,n(1, 1) shows that (1, 0) gives a maxi-
mum for fn+1,n(a, b).

Now we suppose that (1, 0) gives a maximum for fm,n(a, b). By induction (1, 0)

gives a maximum for fm+1,n−1(a, b). We conclude that (1, 0) gives a maximum for
fm+1,n(a, b), completing the proof.

The hypergeometric distribution, the gamma function, and the
Jetsons

The Hypergeometric Distribution

One of the most appealing aspects of Question 3 is that it takes an elementary sub-
ject not obviously related to statistics, counting lattice paths, and leads to a fundamen-
tal discrete probability distribution.

Question 4. Suppose there are m + n students in a class, with a + b girls and the rest
boys. If we randomly choose m students, what is the probability that exactly a of them
are girls?

By basic counting, first choosing the girls and then choosing the boys, we see that
the answer is exactly the expression Fm,n(a, b).

This is the basis for the hypergeometric distribution, which is essential to under-
standing sampling without replacement from a finite population. Usually it is intro-
duced in the following form. In a set of n elements, n1 are red and the rest are black.
If we choose exactly r elements at random without replacement, then the probability
that exactly k of our choices are red is given by

(n1
k

) · (n−n1
r−k

)
(n

r

) .

For more of the basics of the hypergeometric distribution and some applications, see
[6, Section II.6]. Considering more sophisticated types of lattice paths and their gen-
erating functions leads to certain hypergeometric series that have number theoretic
applications in the theory of partitions [1].

The Gamma Function

We have emphasized finding the maximum value of Fm,n(a, b) among all points
except (0, 0) and (m, n), but it is also interesting to consider a bird’s-eye view of this
function over its entire domain. In Figure 4 we give an example for m = 60, n = 30,
where the circle at (a, b) is large if the corresponding value of F60,30(a, b) is large.

Points that are not close to the main diagonal y = 1
2 x do not have many paths pass-

ing through them. Given a lattice path from (0, 0) to (m, n) we can compute its maxi-
mum distance from this line. How large do we expect this maximum to be? We leave
this and more refined statistical questions about these lattice paths to the interested
reader.

Another appealing aspect of Question 3 is that it is an elementary example of an
optimization problem where the correct first step is not to take a derivative and set it to
zero. Attempting to go down this path does lead to interesting mathematics. Binomial
coefficients are defined in terms of factorials, which are initially defined only for non-
negative integers. However, there is a natural continuous setting in which to consider
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Figure 4 A plot showing relative sizes of F60,30(a, b), where larger points represent
larger values.

Figure 5 A plot showing the relative sizes of the continuous version of F60,30(a, b)

defined by the gamma function.

this problem that involves the gamma function �(t). This function plays an impor-
tant role in complex analysis and analytic number theory. Figure 4 suggests that the
discrete values of Fm,n(a, b) can be continuously interpolated in a nice way.

The Gamma function is defined by

�(t) =
∫ ∞

0
xt−1e−x dx,

for all complex number t except negative integers and zero. It is a standard exercise
to show that for n a positive integer, �(n) = (n − 1)!. A continuous version of the
binomial coefficient is then given by(

x

y

)
= �(x + 1)

�(y + 1) · �(x − y + 1)
.

For much more on the gamma function and its role in number theory, see
[7, Chapter 3].

In Figure 5 we give a contour plot of the continuous version of the function
F60,30(a, b). We see the same phenomenon we saw in Figure 4. This function is small
away from the line y = 1

2 x and takes its largest values very close to the origin and to
the point (60, 30).

Giving a continuous function that agrees with Fm,n(a, b) suggests a way to try
to find the maximum value of this function subject to the constraints of Question 3
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by taking derivatives. The derivative of the gamma function is given in terms of the
polygamma function. This approach leads to some more advanced complex analysis,
but it is not clear that this helps us determine where to open our restaurant.

Restaurants in Z
n

We end this paper with a generalization of Question 3 to higher dimensions. We
considered all potential locations for our restaurant on a rectangular grid. Suppose we
finally reach the situation promised by The Jetsons decades ago. You live at (0, 0, 0)

and take your aerocar to your office at point (a1, a2, a3). You always follow the rules of
space-traffic, only driving along edges of the integer lattice Z

3. Your minimum length
drive takes a1 + a2 + a3 steps. The number of such drives is given by the trinomial
coefficient

(a1+a2+a3
a1,a2,a3

) = (a1+a2+a3)!
a1!a2!a3! .

Question 5. Which point in Z
3 other than (0, 0, 0) and (a1, a2, a3) is visited on

the maximum number of drives? That is, where is the best place to open your
3-dimensional space cantina? More generally, we can ask the same question in
Z

n. If people live at the origin and work at (a1, . . . , an), where should I open my
n-dimensional restaurant in order to maximize visits?

The main ideas of the discussion at the start of Section carry over to this higher
dimensional setting. The ideal location should be both “close” to the origin and not
“too far” from the line connecting the origin to the endpoint (a1, . . . , an). A simi-
lar approach of maximizing first over hyperplanes

∑n
i=1 xi = k and then over lines

orthogonal to them seems promising. We leave this as an exercise for the interested
reader.
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Proof Without Words: Series of Perfect
Powers

TOM EDGAR
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The multiset of perfect powers is the collection P = {nm | n > 1; m > 1}:
P = {22, 23, 24, . . . , 32, 33, 34, . . . , 42, 43, 44 . . . , 52, 53, 54, . . .}.

Theorem. The sum of reciprocals of perfect powers is 1:
∑

b∈P

1

b
=

∑

n≥2

∑

m≥2

1

nm
= 1.
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Summary. We wordlessly show that the sum of reciprocals of perfect powers (with duplicates included) is 1.
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Imitating the Shazam App with Wavelets
EDWARD ABOUFADEL

Grand Valley State University
Allendale, Michigan
aboufade@gvsu.edu

Like searching for a needle in a haystack, suppose that we have a large set of signals
(finite sequences of numbers) {s1, s2, s3, . . . }, and a special signal q that may or may
not be in the collection. How can we find signals in the collection that are similar if
not identical to q, and how can we do this quickly? A solution to this question is the
basis of the Shazam smartphone app, where a listener captures a short excerpt of a
recorded song with the smartphone’s microphone, and in a matter of moments the app
reports the name of the song and the artist [12]. There the “needle” is the excerpt, and
the “haystack” is a vast corpus of popular music. The Shazam algorithm is powered
by Fourier analysis [15], and the purpose of this paper is to present a simpler, wavelet-
based method that captures the basic process used by the app.

Solutions to this problem are useful in situations where the description of the “nee-
dle” might not be precise or may have noise in it, such as the Shazam problem, and
where there will be frequent searches of the “haystack.” For this presentation, we will
use a “haystack” of comparable and accessible signals. The Jaeb Center for Health
Research has made a large database of continuous glucose monitor (CGM) data avail-
able to the public∗. The data comes from a recent study of type-1 diabetes (an autoim-
mune disorder characterized by the destruction of the islet beta cells in the pancreas
by the body’s own immune system) that involved 451 patients wearing a CGM for 6 or
12 months [9]. In Figure 1 we see an example of a “CGM day” from a type-1 diabetic
patient: 288 readings of positive integers—one every five minutes.
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Figure 1 Example of an blood glucose daily chart.
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In the following, we will describe how to take a “needle”—a CGM day labeled q—
and find similar days in our database. The key idea—which is how the Shazam app
works—is to create reduced, and practically unique, representations of every CGM
day in the database, and then to compare these short representations rather than the
original signals. Basically, there is an initial investment of time and computing power
to generate short signatures for each signal in the database, and then a search can be
performed quickly by comparing the signatures. To create the signatures, we will use a
visualization called a wavelet scalogram. Wavelets are excellent tools for this type of
signal reduction for CGM data, because of the rough and irregular quality of the data.

Wavelet filters

For our signal matching algorithm, wavelet filtering is an important tool. Wavelets have
been applied in a wide range of areas, such as video cameras [5], Internet worm detec-
tion [6], and the design of low-power pacemakers [8]. Wavelets came to prominence
in the late 1980s, and Ingrid Daubechies was a key researcher in their development.
For good reason, there are families of wavelet filters that are named after her [11]. In
our simplified version of the Shazam process, we will use the Daubechies-6 wavelet
filters. Applying a filter to a finite time series yields another finite series. Filtering a
time series may identify structures in the signal.

There are two Daubechies-6 filters: a low-pass filter which creates a “blur” of the
input time series, and a high-pass filter which reveals details within the time series.
The low-pass filter is a weighted average of entries in the time series, leading to a new
and shorter time series that appears similar to the original. Entries in the high-pass
filter output are close to 0 when the input series is nearly constant, linear, or quadratic,
while other behavior in the input series shows up as larger values (in absolute value)
in the high-pass output.

Given a signal s = {si }, i from 1 to n, we take six entries at a time to compute filter
outputs. For the low-pass filter [14], the calculation is

Hk = h0s2k + h1s2k+1 + h2s2k+2 + h3s2k+3 + h4s2k+4 + h5s2k+5, (1)

where the filter coefficients {hi } are

h0 ≈ 0.2352, h1 ≈ 0.5706, h2 ≈ 0.3252,

h3 ≈ −0.0955, h4 ≈ −0.0604, h5 ≈ 0.02491
(2)

and k varies from 1 to n/2. These coefficients were derived by Daubechies so that the
underlying wavelet functions satisfy certain properties: compact support, orthogonal-
ity, and regularity [1]. Filtering in this way creates a new signal that is half the length
of the input signal. The high-pass filter calculation is

Gk = −h0s2k−4 + h1s2k−3 − h2s2k−2 + h3s2k−1 − h4s2k + h5s2k+1. (3)

Applying these filters yield two new time series of length n/2. The low-pass output
is a weighted moving average of entries in the original time series, while the high-pass
output captures short-term changes in the time series. We call this the first scale of the
analysis.

When using wavelet filters, a pyramid scheme is often implemented. A pyramid
scheme involves applying the filters over-and-over to the low-pass output from the
previous scale. So the second scale consists of two new time series of length n/4, the
third scale has output length n/8, etc. There is a point where the resulting low-pass
output is quite short and no further filtering is useful.
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Before filtering the CGM signals, we apply a common technique known as
“padding” the signals [13], which is extending the signal si in some way for i < 1
and/or i > 288. This is necessary for some of the low-pass filter calculations for k near
288 and some of the high-pass calculations for k near 1. Some ways to pad signals
might be by adding 0’s on the end, or extending the series as if it were periodic. (For
example, if the original signal has length 28, then assign s29 = s1, s30 = s2, etc.) Since
a CGM day is 24 hours, the periodic approach makes sense here.

When filtering each CGM day q, the first round yields two signals of length 144.
Other rounds produce signals of lengths 72, 36, and 18, and the fifth produces length
9. At this point, we no longer have an even number of entries and the low-pass output
of length 9 is quite short, so we end the scheme, leaving us with low- and high-pass
outputs on five different levels. In Figure 2 we see two examples of CGM days and
their corresponding scale-5 “blurs.”
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Figure 2 CGM days and scale-5 wavelet blurs.

Creating wavelet scalograms and signatures

If speed was not important, we could compare the original signals using classic dis-
tance formulas. For example, for any pair of signals of equal length q = {qi } and s =
{si }, i = 1, . . . , n, there are several distances, or norms, that we can calculate between
these signals, such as the 1-norm, the 2-norm, or the infinity norm (or sup norm):
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‖q − s‖1 =
n∑

i=1

|qi − si |,

‖q − s‖2 =
√√√√

n∑
i=1

(qi − si )2,

‖q − s‖∞ = max
1≤i≤n

|qi − si |.

However, to perform a signal match quickly is important, and for larger n and a large
database of signals, these calculations can take considerable time. In this section we
will describe how to reduce the original CGM signals to shorter signatures that can be
compared instead.

A wavelet scalogram is a visual representation of the high-pass filter output that
highlights the most dramatic changes in the signal. For our method, for each CGM
day we create a scalogram as follows: We start with the five scales of analysis that are
calculated from a CGM signal, giving us 279 high-pass outputs (from scales of length
144, 72, 36, 18, and 9). After identifying the 16 largest and 16 smallest (most negative)
entries. we replace those largest entries with the tag +1, the smallest entries with the
tag −1, and the remaining 263 entries with the tag 0. This is a lossy process (it cannot
be reversed) and it is an example of percentile thresholding, which is often applied in
signal processing to filter output.

After thresholding, the scalogram is created by using our time of day as the x-axis
and scale as the y-axis. At each scale we populate a row of rectangles, one for each
high-pass output entry, and color the rectangles black for a top-16 entry (a tag of +1),
gray for the bottom-16 entries (a tag of −1), and white for the rest of the entries. When
comparing the scalogram to the original time series, one can see that, in general, black
and gray areas of the scalogram correspond to places of interesting behavior in the
time series. Black areas usually correspond to where blood glucose is rising, while
gray is where blood glucose is falling, and we might get some black or gray rectangles
on the left or right end due to the periodic padding of the signal. The scale indicates
the length of time of the behavior, with the larger scale capturing behavior over longer
periods of time. Two examples of scalograms can be found in Figure 3.

From each scalogram we can create a 71-item vector for each day that we will call
a signature. The first nine entries will be the nine low-pass output values on the fifth
scale, each rounded to the nearest integer. The remaining entries are the tags from the
fifth, fourth, and then third scales. In Figure 3, the left example is∗ 269-36827, and
here is the signature for this CGM day, divided up as it was created:

[67, 79, 133, 63, 92, 165, 191, 148, 155;
−1, 1, −1, 0, 1, 1, −1, 1, 1;
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, −1, 0, −1, 1, 1, 0;
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

−1, 0, −1, 0, −1, 0].

In this way we can represent each CGM signal q (of length 288) by a shorter,
structured signature q̃ of nine positive integers and 68 tags from the set {−1, 0, 1}.
Once these signatures are calculated, we will use them instead of the original signals
to compare CGM days.

∗given by patient number in the Jaeb database and “Excel Day,” where January 1, 1900 at 12 midnight is “1.”
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Figure 3 CGM days and scalograms.

Matching CGM days

In this section we will define a measure of similarity S between two signatures q̃ and s̃.
We will consider these signatures (and the corresponding CGM days) to be “similar” if
the measure S(q̃, s̃) is sufficiently small. Starting with a test signal, we will be satisfied
with matches that twist and turn in ways like the test signal, and which possess glucose
values that are close to the test signal’s values during most periods of the day. Figure
4 contains a few examples of what we have in mind, with days that are similar to test
day 337-36931.

Our measure S will be defined by calculating a “penalty” that comes from compar-
ing the “high” parts of the signatures, and then a separate penalty by comparing the
“low” parts. The “high” parts of the signatures can be used to find signals with coin-
cidental twists and turns. The basic idea is that the more the −1 and +1 tags match
in the two signatures, the more the signals will have similar shape. We will quantify
this by calculating penalties when the tags do not match, giving greater weight to the
entries in the fifth scale and fourth scale (the two bottom rows of the spectogram). For
signatures q̃ and s̃, we define h(q̃, s̃) as follows: for each pair of corresponding entries
in the “high” parts of the signatures, we assign the following penalties:

−1 0 1

−1 0 6 12
0 6 3 6
1 12 6 0
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Figure 4 Matched CGM days with 337-36931.

Additionally, for the fourth scale, we double the penalties, and for the the fifth scale,
they are quadrupled. Then all penalties are added together to compute h. Because of
the uncertainty of the 0 tag, there are penalties whenever it appears, but there is a
smaller penalty for a pair of 0’s.

If we try using h alone as our similarity measure, matches of a test signal will have
comparable ups-and-downs, but can be quite distant from each other vertically. For
instance, a CGM signal and a second signal created by adding 100 to the first signal
would match perfectly, but this is not what we have in mind for similarity. For this
reason, the “low” parts of the signatures must also be taken into account.

A natural approach to compare “low” entries would be to use vector space norms such
as the 1-norm, the 2-norm, or the infinity norm that were mentioned above. But each of
these three norms are flawed when used to compare signatures. To decide how to use the
“low” entries, a discussion of what we will desire to identify as “similar” is necessary.

If two CGM days appeared to follow the same history for most of the 24 hours and
diverged for an hour or two, but not in an extreme way, then that would be acceptable
as “similar.” Consequently, if two signals agreed more or less on seven or eight of their
nine low entries, while on the other entries the differences were not extreme, and h
for this pair was small, then we would want our similarity measure between these two
days to be small. Also, for type-1 diabetes, all differences between CGM signals are
not the same. First of all, any reading above 240 is considered a “high,” and the target
of the type-1 diabetic patient and any caregiver is to maintain blood glucose numbers
between 70 and 140 mg/dL. It is then the case that a difference of 10 between 75
and 65 is the difference between “in range” and ”low,” and this difference is just as,
if not more important than, the difference between 65 and 55. In turn, both of these
differences are much more important than between 310 and 300.

Consequently, if we think of using these norms to define penalties between CGM
days that are “not similar,” the use of any one of these norms is problematic. For both
the “2-norm” and the “infinity norm,” there is a high penalty for isolated corresponding
entries that are significantly different. So for two signals that agree for nearly their
whole length but differ significantly in one small period of time, the calculation of
either of these norms can yield relatively large values. The “1-norm” will take into
account all nine differences between the two “low” signatures, but unless we weight
the individual differences based on the value of “low” entries, we will either over-
penalize or under-penalize certain differences.

Rather than modify the “1-norm,” we propose using a combination of these three
norms as part of our similarity measure, favoring pairs of CGM days that are assessed
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low penalties from all three norms. Of the nine differences between the “low” entries,
pairs of signals where the largest of the nine differences are relatively small, and the
average of the nine differences are also relatively small, will have a similarity measure
which is relatively small. With this in mind, we define the following similarity measure
between two different CGM signatures q̃ and s̃:

S(q̃, s̃) = 0.01‖q̃ − s̃‖1 + 0.02‖q̃ − s̃‖2 + 0.04‖q̃ − s̃‖∞ + 0.01h(q̃, s̃), (4)

where the first three norms are calculated on the first nine entries of the signatures, and
h applies to the rest of the entries. We also set S(q̃, q̃) = 0, for all q̃, since h(q̃, q̃) �= 0.
Small coefficients are included in each part of the formula for S to give our measure
of similarity a reasonable size when applied to CGM data, and to help with potential
future computer calculations (e.g., dealing with a matrix of similarity measures). The
coefficients were determined through trial-and-error by visually studying the matches
that were identified for selected test signals.

We now have the pieces needed to create a system for matching CGM signals: First,
there is a one-time calculation of signatures for all signals in the database. Once this
investment in calculation is complete, it is then relatively quick to find matches for
our test signal by using the signatures and S. It is this speed of matching that is the
rationale for our proposed method. It would be simpler, but significantly longer in
time, to just compare all the original signals using one of the three norms above, or
some combination of those norms.

Figure 5 shows a second set of examples of matching a test day, in this case day
59-36688 in the Jaeb database. Similar days are identified by values of S less than 10.
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Figure 5 Matched CGM days with 59-36688.

Further discussion

How might this method of matching CGM days be used in practice with patients,
caregivers, and doctors? Currently a patient can use CGM data to fine-tune short-term
blood glucose management: determining at any time if extra insulin is needed to “cor-
rect a high,” or if a “fix” of extra carbohydrates is required for low blood sugar. For
long-term management, a blood test known as A1C∗ is done every three months, pro-
viding a measure of average blood glucose over the past six months. However, the
A1C test doesn’t capture issues of range and volatility of CGM readings.

∗glycated hemoglobin is known as HbA1C, or just A1C.
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One idea is to use the similarity measure S to compare the days of a patient with
“exemplary” days—near-perfect glucose days where all CGM readings are between
70 and 140 and there is very little change from one reading to the next. With such a
comparison, a patient and treatment team can analyze how close the patient’s days are
to these “exemplary” days, and this may shed light on issues of range and volatility.
The more that is understood about a patient’s blood glucose dynamics, the better that
variables such as medication, food, and activity can be adjusted [4, 10].

Specifically, it might be enlightening to find days with large S values compared to
“exemplary”days.Ananalysis like this canbe revealing for somepatients, suchaspatient
484 in the Jaeb database. For this patient, the reported A1C in the Jaeb data files was
6.6%, a very good reading, and it corresponds to an average blood glucose of around 150.
However, a study of the patient’s CGM data using our similarity measure S shows fewer
exemplary days than would be expected. Graphs of individual days, such as 484-37036
and 484-37171 (see Figure 6), suggest that for this patient, there are many highs and
lows of short duration that an A1C score would not detect. With this understanding,
treatment plans could be adjusted to address these issues of volatility and range.
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Figure 6 Patient 484: Two days with significant highs and lows, but a good average.

Returning to the Shazam app, the methods used to match an audio clip to a song
in its database are similar to what has been described in this paper, but more compli-
cated. For instance, Fourier analysis is used instead of wavelet filters, which leads to
the creation of spectograms rather than scalograms. The signature/similarity measured
calculations also involve finding peak values in the spectrogram, but in a significantly
different way. Also, modifications are needed to take into account that only a short
segment of a song is the test signal, rather than the whole song. Details can be found
in [15]. The scalograms that we created are based on standard wavelet scalograms [2]
and the use of wavelet scalograms with audio signals is demonstrated in [3]. That paper
also incorporates quantization, which is a variant on the use of tags that is described
in this paper.

Finally, the Shazam algorithm and the methods in this paper are part of the field
of data science, which has seen massive growth in the past few years. Advances have
been fueled by the growing availability of large data sets as sensors and storage devices
have gotten smaller and cheaper, and more legacy data is made freely available on the
Internet. New innovations are anticipated over the next 10–20 years [7], and there are
many parts of upper-level collegiate mathematics that can open doors to this discipline.
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Appendix: Preprocessing the CGM data

To create our set of CGM signals to search through, we only used the days in the Jaeb
databasewhichhadat least209outof288possibleCGMreadings.This led to42,799days
comingfrom346patients.Forthedaysthatwereused,whenCGMreadingsweremissing,
the previous known reading was used as a reasonable replacement. So the database that
we used consisted of 42,799 days, each with 288 CGM positive integer readings.
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ACROSS
1. Marina spot
5. Makes a mistake
9. Italian of finite plane fame

13. y = 2x + 11, e.g.
14. Crouch
15. Fe
16. End of a Christian prayer
17. Daddy’s sister
18. Complexion trouble for teenagers
19. Euclid’s fifth was controversial
21. Soot
22. Appropriately
23. Mushroom spore sacs, or nearly a

27-character set
24. Slow musical pieces
27. Sets of Hilbert and Birkhoff
29. Pythagorean theater
30. She is a problem to be solved, in song
32. Former EU trade org.
34. The whole is greater the part
35. Loses color
36. Small whirlpool
37. Male heir
38. Main circulatory stem
39. Sailboat tie-down
40. Unsquarable figure
42. Largest inland city in California
43. Check
44. “Going off on a tangent,” for example
46. Not tails
48. Face type of a right pyramid
52. Prefix with symmetry
53. Selling point
54. Vertex
55. In of
56. Says, “Shorry, thass not my drink!”
57. Pythagorean attire
58. 2Z + 1
59. Understands
60. Current interdisc. acad. focus

DOWN
1. Gretsky shot
2. VIP transport
3. Chem. suffixes
4. Regular figure constructible with a 72◦

angle
5. Like vertical angles
6. Like the smallest of the litter
7. dy

dx or �y
�x

8. Hog home
9. Debacle

10. Greek mathematician with a spiral
11. ∅
12. Multiplicative identities of algebraic

fields
14. Preserves, as cod
20. Once a time...
21. It spans 11 time zones
23. x- or y-
24. Oodles
25. Not standing, as a committee
26. Revived, like a zombie
27. Result of Heron’s formula
28. Automobile category
30. Filly’s mother
31. Ht. of a triangle
33. Prefix with -plasm
35. Singularity of a complex function
36. Euclid’s 13-book classic
38. Divisions of a play
39. Critter sometimes confused with a gator
41. Bicycle spoke, for example
42. Dukes, say
44. Unit of MATHEMATICS MAGAZINE

45. These folks are not all talk
46. Xbox first-person shooter game
47. Oklahoma city west of Tulsa
48. Skye or Wight
49. Burglar’s take
50. Graph component unrepeated in an Euler

path
51. Line at the intersection of two pieces
53. It’s often mistaken for a triangle cong.

scheme
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Proof Without Words: Sums of Odd Integers
SAMUEL G. MORENO

Universidad de Jaén
23071 Jaén, Spain
samuel@ujaen.es

1 + 3 + 5 + · · · + (2n − 1) = n + 1

2
(n − 1)(2n − 2) + n − 1 = n2.
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Summary. The number of unit-squares in the left figure equals the sum of the area of the rectangle (of length
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Proposals

To be considered for publication, solutions should be received by March 1, 2018.

2026. Proposed by Lokman Gökçe, Turkey.

The angles of triangle�ABC satisfy ∠A = 3 ·∠B. What is the least possible perimeter
of �ABC assuming its side lengths are integers?

2027. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu”,
Bı̂rlad, Romania.

Prove that the equation

n(n + 1)(n + 2)(n + 3) = a2 + b2

admits infinitely many solutions in integers a, b, n.

2028. Proposed by Oniciuc Gheorghe, Botosani, Romania.

Is there a nonconstant sequence {an}n≥1 in the interval (0, 1) such that

lim
n→∞

(1+ a1 − a2)(1+ a2 − a3) · · · (1+ an−1 − an)(1+ an − a1) = 1?

2029. Proposed by Kenneth Schilling, University of Michigan-Flint, MI.

Let N be the set of natural numbers. For any function g : N→ N and a subset Y of N,
we denote by g[Y ] = {g(y) : y ∈ N} the forward image of Y by g. Given a natural
number n, a collection C of subsets of N is called:
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• n-plenary if there exist functions f1, f2, . . . , fn : N→ N such that, for all X ∈ C,

f1[X ] ∪ f2[X ] ∪ · · · ∪ fn[X ] = N.
• strongly n-plenary if there exist f1, f2, . . . , fn : N→ N such that, for all X ∈ C,

either f1[X ] = N, or f2[X ] = N, . . . , or fn[X ] = N.

For every natural number n:

(a) Prove that a collection C is n-plenary if and only if it is strongly n-plenary.
(b) Construct an (n + 1)-plenary collection C that is not n-plenary.

Editor’s Note. Problem 2029 was inspired by Problem 1998 in which the concept of
plenary collection was introduced. The statement and solution of Problem 1998 appear
under Solutions below.

2030. Proposed by Rajesh Sharma, Himachal Pradesh University, India.

(a) Prove that a real symmetric 3× 3 matrix with equal diagonal entries has a multiple
eigenvalue if and only if its nondiagonal entries all have the same absolute value.

(b) Characterize all complex hermitian 3× 3 matrices with equal diagonal entries and
a multiple eigenvalue.

Quickies

1073. Proposed by M. Hajja, Amman, Jordan.

Let ABCD be a convex quadrilateral such that AB = CD and ∠D > ∠A. Prove that
∠B > ∠C .

1074. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

A derivative on R is a function f : R→ R such that f is the derivative of some
function F : R→ R. Prove or disprove: Every derivative f on R satisfies

lim inf
t→x

f (t) ≤ f (x) ≤ lim sup
t→x

f (t) for all x ∈ R.

Solutions

1996. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Compute

lim
x→0

1

x

∫ x

0

∣∣∣∣cos
1

t

∣∣∣∣ dt.

Solution by Michel Bataille, Rouen, France.
We show that the value of the limit is 2/π .

For x 
= 0, let L(x) = x−1
∫ x

0

∣∣cos t−1
∣∣ dt . The substitution t �→ − t in the integral

shows that the L is an even function, so it suffices to show that limx→0+ L(x) = 2/π .
For x > 0, the substitution t �→ 1/t gives
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L(x) = 1

x

∫ ∞
1/x

| cos t |
t2

dt.

The function f (x) = |cos x | is continuous, hence it has a primitive F on R (i.e., an
antiderivative). Let G(x) = F(x)− 2x/π . For all real x ,

G(x + π)− G(x) = F(x + π)− F(x)− 2

π
· π =

∫ x+π

x
|cos x | dx − 2

=
∫ π

0
|cos x | dx − 2 = 0, since f (x) = |cos x | has period π .

Thus, G is a continuous periodic function, hence bounded on R. Let M = max{|G(t)| :
t ∈ R}. For Y > y > 0, integrating by parts we obtain∫ Y

y

|cos t | − 2
π

t2
dt =

∫ Y

y

1

t2
· G ′(t) dt = G(Y )

Y 2
− G(y)

y2
+ 2

∫ Y

y

G(t)

t3
dt.

Since G is bounded and
∫∞

y t−3 dt converges, it is clear that
∫∞

y (|cos t | − 2/π)t−2 dt
converges (absolutely, in fact), and∫ ∞

y

|cos t | − 2
π

t2
dt = −G(y)

y2
+ 2

∫ ∞
y

G(t)

t3
dt.

Now, ∣∣∣∣L(x)− 2

π

∣∣∣∣ =
∣∣∣∣x−1

∫ ∞
x−1

|cos t |
t2

dt − 2

π

∣∣∣∣ =
∣∣∣∣∣x−1

∫ ∞
x−1

|cos t | − 2
π

t2
dt

∣∣∣∣∣
=
∣∣∣∣−G(x−1)

x−1
+ 2x−1

∫ ∞
x−1

G(t)

t3
dt

∣∣∣∣
≤ Mx + 2Mx−1

∫ ∞
x−1

dt

t3
= 2Mx,

so

x−1

∫ x

0

∣∣cos t−1
∣∣ dt = L(x)→ 2

π

as x → 0+, hence also as x → 0.

Also solved by Robert Calcaterra, Robin Chapman (UK), Dmitry Fleischman, Nilotpal Ghosh,
Jan Greszik, Eugene Herman, Tom Jager, Kee-Wai Lau (Hong Kong), Missouri State University
Problem Solving Group, Moubinool Omarjee (France), Northwestern University Problem Solving
Group, Paolo Perfetti (Italy), Mehtaab Sawhney, Nicholas C. Singer, and the proposer. There
were 2 incomplete or incorrect solutions.

The improper integral of a rational-exponential function June 2016

1997. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

Calculate ∫ ∞
0

(
1− e−x

x

)2

dx .

Solution by Travis D. Cunningham (student), Carson City, MI.
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The integrand is the square of

1− e−x

x
=
∫ 1

0
e−t x dt,

the Laplace transform of the characteristic function of the interval [0, 1]. Thus,∫ ∞
0

(
1− e−x

x

)2

dx =
∫ ∞

0

(∫ 1

0
e−t x dt

)(∫ 1

0
e−ux du

)
dx

=
∫ 1

0

∫ 1

0

∫ ∞
0

e−(t+u)x dx du dt =
∫ 1

0

∫ 1

0

1

t + u
du dt

=
∫ 1

0

(
ln(t + 1)− ln t

)
dt =

∫ 2

1
ln t dt −

∫ 1

0
ln t dt = (2 ln 2− 1)− (−1)

= 2 ln 2.

(Recall the standard integral
∫ b

a ln t dt = F(b)− F(a) for a, b ≥ 0, where F(t) = t
ln t − t for t > 0, and F(0) = limt→0+ F(t) = 0.) Switching of the order of integration
above is justified by Fubini’s theorem since the integrand is nonnegative.

Editor’s Note. Solutions submitted by readers used a variety of approaches. Bruce E.
Davis from St. Louis Community College at Florissant Valley (MO) provided no fewer
than four different methods, including the one above.

Also solved by Adnan Ali (student) (India), Michel Bataille (France), Khristo Boyadzhiev,
Robert Calcaterra, Robin Chapman (UK), Hongwei Chen, Bruce E. Davis, Prithwijit De (India),
Nilotpal Ghosh, Jan Grzesik, Jim Hartman, Eugene Herman, Finbarr Holland (Ireland), Tom
Jager, Parviz Khalili, Koopa Koo (Hong Kong), Kee-Wai Lau (Hong Kong), Robert J. Lopez
& Herb Bailey, John Mahony (New Zealand), Missouri State University Problem Solving Group,
Moubinool Omarjee, Paolo Perfetti, Arthur J. Rosenthal & Andrew A. Barrett, Mehtaab Sawhney,
Nicholas C. Singer, Seán Stewart (Australia), Nora Thornber, Utah Weber State University “P,
J and R Group”, Michael Vowe (Switzerland), Yuanyuan Zhao, and the proposer. There was 1
incomplete or incorrect solution.

1998. Proposed by Greg Oman, University of Colorado, Colorado Springs, CO.

Let N be the set of natural numbers. We call a collection C of subsets of N plenary if
there exists a function f : N→ N such that f [X ] = N for all X ∈ C, where f [X ] =
{ f (x) : x ∈ X} is the set of images of elements of X under f .

(a) Prove that any countable collection of infinite subsets of N is plenary.
(b) Prove that the collection of all infinite subsets of N is not plenary.
(c) Are there any uncountable plenary collections?

Solution by Northwestern University Math Problem Solving Group, Evanston, IL.

(a) Assume C = {Xk}∞k=0 is a countable collection of infinite subsets of N. Let g :
N × N→ N be any bijection. (For instance, g(p, q) = 1

2 (p + q)(p + q + 1) +
p.) Call f a partial function N → N if f is a function into N whose domain
dom( f ) is a subset of N. We construct a sequence { fi }i∈N of partial functions
N→ N recursively as follows. Let f0 be the empty function ∅ → N. Given i ∈ N,
let (ki , mi) = g−1(i). Let ni be the least element of Xk \ dom( fi) = { j ∈ Xk |
j /∈ dom( fi)}, and let fi+1 extend fi by defining fi+1(ni ) = mi . The process can
continue indefinitely because dom( fi ) is clearly a finite subset of N (with exactly
i elements in fact), so Xk \ dom( fi) must still be infinite, hence nonempty. By the
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well-ordering of N the element ni above exists, ensuring the recursive construction
proceeds indefinitely. Now let the (complete) function f : N→ N be defined by
f (n) = fi(n) if n ∈ dom( fi) for some i ∈ N, and f (n) = 0 otherwise. Clearly,
f j is a function extending fi for j ≥ i , so f is well defined a fortiori. To finish
the proof, we show that f [Xk] = N for any given k ∈ N. Let m ∈ N, and let i =
g(k, m). Clearly, (k, m) = (ki , mi), hence m = mi = fi+1(ni ) = f (ni) ∈ f [Xk]
since ni ∈ Xk . We conclude that C is plenary.

(b) Let f : N→ N be arbitrary. Let E be the set of even, O the set of odd natu-
ral numbers, so N is the disjoint union of the infinite sets E and O. Clearly,
X0 = f −1[E] and X1 = f −1[O] are also disjoint sets with X0 ∪ X1 = N. Note
that f [X0] ⊂ E � N and also f [X1] � N. Since N is infinite, at least one of X0,
X1 must be infinite with image under f a proper subset of N, so the collection of
all infinite subsets of N is not plenary.

(c) The answer is yes. We construct one uncountable plenary collection.
Let C be the collection of subsets of N that include the set E of even num-

bers. Note that C = {E ∪ Y : Y ⊂ O} with O the set of odd numbers; in fact, the
mapping Y �→ E ∪ Y is a bijection between subsets of O and members of C. The
countable set O has uncountably many subsets Y by Cantor’s theorem, hence C is
uncountable also.

To see that C is plenary, note that if f : N → N is any function such that
f (2n) = n for all n ∈ N, then f [X ] ⊇ f [E] = N, hence f [X ] = N for all X ∈ C.

Also solved by Paul Budney, Robert Calcaterra, Robin Chapman, Joseph DiMuro, Jerrold
Grossman, and the proposer. There was 1 incomplete or incorrect solution.

1999. Proposed by Mihàly Bencze, Brasov, Romania.

For any real number a > 1, evaluate
∞∑

m=1

∞∑
n=1

m2n

am(nam + man)
.

Solution by Adnan Ali (student), A.E.C.S-4, Mumbai, India.
The value of the sum is S = 1

2 a2/(a − 1)4. The series has nonnegative terms, hence
we may swap the order of summation and rename the dummy variables to get

S =
∞∑

m=1

∞∑
n=1

mn2

an(nam + man)
.

Thus,

2S = S + S =
∞∑

m=1

∞∑
n=1

mn

nam + man

(
m

am
+ n

an

)
=
∞∑

m=1

∞∑
n=1

mn

am · an
=
( ∞∑

n=1

n

an

)2

.

For |x | < 1,
∞∑

n=1

nxn = x · d

dx

∞∑
n=0

xn = x · d

dx

(
1

1− x

)
= x

(1− x)2
,

whence

2S =
( ∞∑

n=1

na−n

)2

=
(

a−1

(1− a−1)2

)2

= a2

(a − 1)4

whenever a > 1, because |a−1| < 1 in this case. It follows that S = 1
2 a2/(a − 1)4.



304 MATHEMATICS MAGAZINE

Also solved by Michel Bataille (France), Robert Calcaterra, Robin Chapman (UK), Hongwei
Chen, Travis D. Cunningham, Bruce Davis, Tom Jager, Parviz Khalili, Koopa Koo (Hong Kong),
James Magliano, John Mahony, Rituraj Nandan, Michael Nathanson, Northwestern University
Math Problem Solving Group, Mehtaab Sawhney, Nicholas Singer, Michael Vowe (Switzerland),
and the proposer.

2000. Proposed by Michel Bataille, Rouen, France.

Let �ABC have a right angle at A. Let M be the midpoint of AB, let D lie on side BC
so BD = BA, and let P lie on the circumcircle of �ADC so that ∠APB = 90◦. Let U
lie on line

←→
AP so that BU is perpendicular to MP, and let V lie on

←→
DP so that BV is

parallel to MP.
Prove that PU/PV = BU/BV , and the line

←→
CP bisects UV .

Solution by Peter McPolin, St. Mary’s University College, Belfast, UK.

A

B

C

DM

P

U

V
E

N N′
N1

QΓ

Let � be the circle with diameter AB and let E be the point of intersection of the
line
←→
MP with its perpendicular line

←→
BU. Since AP ⊥ PB and PE ⊥ BU by construc-

tion, the point P lies on � and ∠BPE = ∠PUB; moreover, ∠BPE = ∠BPM = ∠MBP
= ∠ABP because �BMP is isosceles. We conclude that we have a similarity �BPU
∼ �APB between right triangles.

Next, let α = ∠PAB = ∠UBP, β = ∠DAP, and γ = ∠PDA. Since A, P, D, C are
concyclic, ∠DCP = ∠DAP = β and ∠PCA = ∠PDA = γ , hence ∠BCA
= ∠DCA = ∠DCP + ∠PCA = β + γ . Let Q be the point of intersection of lines←→
PA and

←→
BV . Since BQ ‖ PM ⊥ BU and QU ⊥ BP, we have ∠BQU = ∠UBP = α.

Angle ∠BQU = ∠BQP is exterior to triangle �QPV , so α = ∠BQP = ∠VPQ
+ ∠QVP. Similarly, ∠VPQ is exterior to �PDA, so ∠VPQ = β + γ . Thus, ∠BVP
= ∠QVP = α − (β + γ ). Since �BAC has a right angle at A, ∠ABC = 90◦ − ∠BCA
= 90◦ − (β + γ ). We now have, ∠PBD = ∠ABC−∠ABP = ∠ABC− (90◦ −∠PAB)

= (90◦ − (β + γ )) − (90◦ − α) = α − (β + γ ) = ∠BVP. The similarity �VPB
∼ �BPD follows since these triangles have two equal angles.

Now we prove that PU/PV = BU/BV . From �APB ∼ �BPU, we get PU/PB
= BU/BA; from �BPD ∼ �VPB, we get PV/PB = BV/BD = BV/BA (since BD
= BA by construction). Combining these ratios gives PU/PV = PU/PB · PB/PV
= BU/BA · BA/BV = BU/BV as asserted.

We have ∠DCP = ∠DAP in the cyclic quadrilateral APDC. Let N be the midpoint
of AD. Since�ABD is isosceles, BN is perpendicular to AD and ∠BNA is a right angle.
It follows that the quadrilateral ANPB is also cyclic and ∠PNB = ∠PAB = ∠UBP.
The similarity �VPB ∼ �BPD gives ∠BDP = ∠PBV = ∠UBV − ∠UBP = 90◦

− ∠UBP. Thus, ∠PDC = 180◦ − ∠BDP = 180◦ − (90◦ − ∠UBP) = 90◦ + ∠UBP
= 90◦ + ∠PNB = ∠PNA, hence, ∠PDC = ∠PNA. Since triangles �ANP, �CDP
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have two equal angles ∠NAP = ∠DAP = ∠DCP and ∠PNA = ∠PDC, their third
angle must also be equal: ∠APN = ∠CPD. It follows that the reflection N1 of N in
the angle bisector of ∠APD must lie on the line

←→
CP.

Next, we show that �APD ∼ �VPU. From �BPU ∼ �APB we get PA/PB
= PB/PU, and from �VPB ∼ �BPD we get PD/PB = PB/PV . Thus, PD/PA
= PD/PB · PB/PA = PB/PV · PU/PB = PU/PV . The similarity �APD ∼ �VPU
follows by SAS.

The transformation of �APD into �VPU is achieved by reflecting �APD in the
angle bisector of the common angle at P (i.e., of ∠APD = ∠UPV), then dilating
with center P by factor PU/PD. This transformation maps the midpoint N of AD
to the midpoint N ′ of UV , which is precisely the dilation of N1 with center P and
factor PU/PD. Since N1 lies on

←→
CP so does N ′, concluding the proof.

Also solved by Herb Bailey, Robert Calcaterra, Robin Chapman (UK), Andrea Fanchini (Italy),
Ioana Mihaila, and the proposer. There was 1 incomplete or incorrect solution.

Answers

Solutions to the Quickies from page 300.

A1073.

A

B
C

D

This is one of the fairly rare applications of Propositions 24 and 25 of Book I of
Euclid’s Elements, sometimes nicknamed the open mouth theorems. Taken jointly,
these theorems state that if�ABC and�A′B ′C ′ are two triangles in which AB = A′B ′

and AC = A′C ′, then BC > B ′C ′ if and only if ∠A > ∠A′. (The “if” statement is
Proposition 24; the “only if” is Proposition 25.) Thus, in triangles �DAC and �ADB
we have AC > DB; in triangles �BCA and �CBD we have ∠B > ∠C as desired.

A1074. We prove the statement. Let f be the derivative of F : R→ R and let x0 ∈ R.
By the mean value theorem, for any positive integer n there exists xn ∈ (x0, x0 + 1/n)

such that

F(x0 + 1/n)− F(x0)

1/n
= F ′(xn) = f (xn).

Thus,

f (x0) = F ′(x0) = lim
n→∞

F(x0 + 1/n)− F(x0)

1/n
= lim

n→∞
f (xn).

Since xn → x0 as n →∞ (and xn 
= x0 for all n), f (x0) = limn→∞ f (xn) is a clus-
ter value of f at x0, hence lim inft→x0 f (t) ≤ f (x0) ≤ lim supt→x0

f (t). As x0 was
arbitrary, this concludes the proof.
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selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
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Knudson, Kevin, There are only 15 pentagonal tilings (probably), Forbes (26 June 2017),
https://www.forbes.com/sites/kevinknudson/2017/06/26/there-are-only-15-
pentagonal-tilings-probably/#338258b54cb6.

Wolchover, Natalie, Pentagon tiling proof solves century-old math problem,
https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-
math-problem-20170711/.

Wolchover, Natalie, Marjorie Rice’s secret pentagons, https://www.quantamagazine.org/
marjorie-rices-secret-pentagons-20170711/.

Lipton, R. J., and K. W. Regan, Kitchen tile catalog complete, https://rjlipton.wordpress.
com/2017/07/16/kitchen-tile-catalog-complete/.

Rao, Michaël, Exhaustive search of convex pentagons which tile the plane, https://perso.
ens-lyon.fr/michael.rao/publi/penta.pdf. Presentation slides at http://www.crm.
umontreal.ca/2017/Pavages17/pdf/Rao1_slides.pdf.

Amateur mathematician Marjorie Rice, who discovered in the 1970s four previously unknown
families of tessellations by pentagons, died in July. Dementia prevented her from learning of
a proof a few months earlier that there are only 15 such families, by Michaël Rao (CNRS and
École Normale Supérieure de Lyon). Rao concludes his lecture slides with further work to do:
recheck the proof, recheck the code (≈5,000 lines in C++), reproduce the exhaustive search,
find a formal proof.

Willemain, Thomas Reed, Working on the Dark Side of the Moon: Life Inside the National
Security Agency, Mill City Press, Maitland, FL; xii+119 pp, $15.99(P). ISBN 978-1-62952-
872-4.

Author Willemain, “an electrical engineer turned applied statistician and software entrepreneur,”
was a sabbatical visitor on the Mathematics Research staff of the National Security Agency
(NSA) and later at the Institute for Defense Analysis. This book describes day-to-day life in “a
dream environment for a professor on sabbatical. . . the best of the academic world without some
of its drawbacks.” The writing is breezy, the sentiments are sincere, and his enthusiasm for the
people and the mission of the NSA is palpable. The book was cleared by the NSA (redacted
passages are replaced by black bars); the author offers a Webpage that gives an account of his
prepublication experience.

Rougetet, Lisa, The prehistory of Nim game [sic] (36 pp). In G4G11 Gift Exchange Book. www.
gathering4gardner.org/g4g11gift/Rougetet_Lisa-Prehistory_of_Nim.pdf.

This paper traces description of various Nim-type games back, to Luca Pacioli around 1500, and
forward, through various European works on recreational mathematics. The paper concludes
with description of a West-African grid-pattern blocking game, Tiouk-Tiouk, that is analogous
to Nim.
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Pitici, Mircea, The Best Writing on Mathematics 2016, Princeton University Press, 2017;
xxii+377 pp, $32.95(P). ISBN 978-0-691-17529-4.

This year’s compendium of rich and remarkable mathematical writing offers the added pleasure
of color illustrations for many of its pieces. Notable articles are a spirited defense of “strong”
non-Platonism (Derek Abbott), a curious fact about stacking wine bottles (Burkard Polster),
news of proof of the Umbral Moonshine Conjecture (Erica Klarreich), mathematical objects at
the Metropolitan Museum of Art in New York (Joseph Dauben and Marjorie Senechal), and
what depth may mean in mathematics (John Stillwell).

Nadis, Steve, The universe according to Emmy Noether: How a deceptively simple theorem
from a century ago still shapes modern physics, Discover 38 (5) (June 2017) 49–53.

Neuenschwander, Dwight E., Emmy Noether’s Wonderful Theorem, revised and updated edi-
tion, Johns Hopkins University Press, 2017; xvi+317 pp, $30(P). ISBN 978-1-4214-42267-1.

“[E]very ‘continuous’ symmetry in nature has a corresponding conservation law, and vice versa.
. . . The theorem provides an explicit mathematical formula for finding the symmetry that under-
lies a given conservation law and, conversely, finding the conservation law that corresponds to
a given symmetry.” So author Nadis summarizes Noether’s theorem, explaining that it provides
a common principle for conservations of momentum, angular momentum, energy, and electric
charge, and symmetries of space translation, rotational invariance, time translation, and color
symmetry of quarks. Nadis gives no technical details, but Neuenschwander does, in a book for
physics majors with a strong background in mathematics; the book does not shy away from
Lie groups and the study of invariants. This new edition delves into distinctions between two
Noether theorems and adds more exercises, references, and details.

Narayanan, Arvind, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder,
Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University
Press, 2016; xxvii+304 pp, $49.50. ISBN 978-0-691-17169-2.

This book explains how Bitcoin works, its reliance on decentralization, how to mine Bitcoins
(and how and why it gets more difficult over time), and how this “cryptocurrency” solves typ-
ical problems of a currency (e.g., theft, double spending). The authors suggest that the reader
have a basic understanding of computer science and some programming experience. Online
supplementary materials include homework questions and programming assignments.

Stewart, Ian, Significant Figures: The Lives and Work of Great Mathematicians, Basic Books,
2017; vi+300 pp, $27. ISBN 978-0-465-09612-1.

A previous generation of mathematicians was inspired by E.T. Bell’s Men of Mathematics
(1937), marred as it is by fanciful conjecture and inexact history. Stewart has prepared a read-
able collection of snapshots for the next generation. He relates the mathematics—the “most
important—or interesting—discoveries and concepts” of 25 “significant figures” of mathemat-
ics. Stewart does not include any living mathematicians and ends with the relatively recent
Benôit Mandelbrot and William Thurston, after treating Gödel and Turing.

Posamentier, Alfred S., and Stephen Krulik, Strategy Games to Enhance Problem-Solving Abil-
ity in Mathematics, World Scientific, 2017; xiii+121 pp, $24(P). ISBN 978-9-81-314634-1.

The authors present several families of games of strategy: tic-tac-toe games, blocking games,
games with ongoing changes in strategy, and miscellaneous games, some of which were new to
me. The book sets out the rules, the goal, and a “sample simulation” of the game. Suggestions
for strategies are included for selected games. The authors assert a strong connection between
good at problem solving and being good at games of strategy, and between the kinds of think-
ing involved in games and that practiced by mathematicians. They also point out similarities
between heuristics for game strategies and those for general problem solving. But they do not
cite sources that delve into those relationships, nor ones that support the claim of the title that
playing strategy games enhances mathematical problem-solving ability. I wish that there were
some mention of mathematical theory about games (e.g., every finite tree game has a natural
outcome), plus a bibliography with further details about the origins and strategies for the games.
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Carl B. Allendoerfer Awards

The Carl B. Allendoerfer Awards, established in 1976, are made to authors of articles
of expository excellence published in Mathematics Magazine. The Awards are named
for Carl B. Allendoerfer, a distinguished mathematician at the University of Washing-
ton and president of the Mathematical Association of America, 1959–60.

Brian Conrey, James Gabbard, Katie Grant, Andrew Liu, and Kent Morrison

“Intransitive Dice,” Mathematics Magazine, Volume 89, Number 2, April 2016, pages
133–143.

Intuition suggests that transitivity should hold in matters of strength. This intuition
fails spectacularly in an example described by Martin Gardner in 1970 and originally
due to Bradley Efron a few years earlier. The example consists of four six-sided dice
labeled A–D, with all faces having numbers belonging to {1, 2, 3, 4, 5, 6}, such that A
beats B with probability 2/3, B beats C with probability 2/3, C beats D with probability
2/3, and D beats A with probability 2/3.

The fundamental question asked in “Intransitive Dice” is: How rare is this? In other
words, given a random set of dice, how likely is it that one could put them into a cycle
that is intransitive? The question is a tantalizing one, and the authors deftly move from
the concrete to the abstract in their search for the answer.

The authors first look for intransitive triples of dice. The frequency of ties in the
setting of six-sided dice may leave one unsatisfied, so the authors go on to consider
triples of n-sided dice, allowing numbers in {1, . . . , n} and imposing the condition
that the sum of the numbers on each die be n(n+1)/2. The authors conjecture that
as n grows, the probability of a tie goes to 0, while the probability of an intransitive
triple goes to 1/4. After giving some computational evidence for these conjectures,
they prove that as the number of sides grows, the probability of an intransitive cycle
when there are no ties is 1/4.

The authors conclude by returning to the four-dice setting of the original example
and taking n-sided dice where the sum of all numbers on each die is n(n+1)/2. They
present both heuristic and computational evidence that as n grows the probability of
an intransitive cycle approaches 3/8. Even more provocatively, they conjecture that for
k such dice, the limiting value approaches an expression in k that in turn goes to 1 as k
grows. As they write, “. . . our intuition that intransitive dice are rare and that larger sets
are even rarer is completely unfounded. They are common for three dice and almost
unavoidable as the number of dice grows.”

It’s not exactly common for high school students to participate in a Math Circle that
leads to a published article in a mathematics journal, but in the case of “Intransitive
Dice” we have just that. The authors of this article hit on all of the important modes
of mathematical research. They collect data, generalize patterns, look for conjectures,
and even prove theorems. All of this is tied together in a fun article that touches on
many areas of mathematics and keeps the reader engaged to the end.
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Response from Conrey, Gabbard, Grant, Liu, and Morrison

It is both an honor and a pleasure to be recognized with the Allendoerfer Award
this year. For all five of us, this work has been an unusual experience. James, Katie,
and Andrew were high school students in Morgan Hill, California, when they met
Brian through the outreach program of the American Institute of Mathematics. They
were looking for advice and mentoring for a science fair project in mathematics, and
Brian suggested a topic that he liked to use in his “Untuition” talk aimed at high school
students and teachers. For their science fair project, which eventually received an Hon-
orable Mention for first place in the 2013 California State Science Fair, they focused
on systematic construction of sets of intransitive dice. From this work, a precise ques-
tion was formulated. Suppose that you have three random dice A, B, and C, with A
stronger than B and B stronger than C. How likely is it that A is stronger than C? They
decided to concentrate on “one-step” dice, which are as close to the standard die as
possible. After they figured out completely how two one-step dice do not tie, then it
was possible to write a computer program to find the patterns for triples of one-step
dice that do not have any ties, and this enabled us to count the intransitive triples with
enough accuracy to prove that as n goes to infinity, the answer to the question (for one-
step dice) is that the two possibilities are equally likely. Further computer experiments
convinced us that the intransitivity phenomenon is generic for larger sets of proper
dice (i.e., those whose n faces use numbers between 1 and n with total n(n+1)/2). We
have not found a proof or even a promising way to attack this grand conjecture, but
we hope that our article stimulates interest in the conjecture and ultimately leads to its
resolution.

Biographical Notes

Brian Conrey is the executive director of the American Institute of Mathematics in
San Jose, a position he has held since 1997. He has taught at the University of Illinois
and Oklahoma State University. He received his B.S. from Santa Clara University
and his Ph.D. from the University of Michigan. His research interests are in analytic
number theory and random matrix theory.
Kent Morrison received his B.A. and Ph.D. degrees from the University of California,
Santa Cruz. After 30 years on the faculty of Cal Poly, San Luis Obispo, including nine
years as department chair, he is now Professor Emeritus. Since 2009 he has been affil-
iated with the American Institute of Mathematics (AIM), where he helps in various
capacities and directs the AIM Open Textbook Initiative to encourage the develop-
ment and use of open source and open access textbooks for undergraduate mathemat-
ics courses. He has found it difficult to stick to one area of mathematics but in recent
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Vladimir Pozdnyakov and Michael Steele
“Buses, Bullies, and Bijections,” Mathematics Magazine, Volume 89, Number 3, June
2016, pages 167–176.

“In times past in a country far away, passengers on intercity buses were all assigned
seat numbers, and the buses were always full. There were many casual people, and
there were a few people who were real sticklers for the rules. This is where our problem
begins.”

Suppose n people are assigned to n seats on a bus such that person i is assigned to
seat i, for 1 � i � n. Persons 2 through n enter the bus and take seats randomly. When
person A enters, A sits in his or her assigned seat if it is available, otherwise A forces
the person in his or her seat to move, and A requires the displaced person to take his
or her assigned seat, possibly forcing someone else to move. This process continues
until there are no more displaced persons. The authors ask: What is the probability
that person 2 will have to move? This simple question starts the reader on a journey
through the world of bijections on the symmetric group Sn .

The answer to the question comes from observing there is a bijection between per-
mutations that have 1 and 2 in the same cycle and those that do not. The authors ele-
gantly tackle more involved questions about bumping passengers and the associated
bijections, permutations, and cycles. One interesting question concerns the probability
that exactly m people out of the first k to enter the bus get displaced. The surprising
result is that the answer is 1

k which does not depend on m or n.
The authors conclude with a glimpse at how tools like those developed in their

paper can address other questions. Topics touched on include derangements, Spitzer’s
identity from combinatorial probability, and finally the famous Robinson–Knuth–
Schensted correspondence, which is a bijection from permutations to pairs of Young
tableaux. The authors demonstrate that there is much to be learned by examining
certain bijections on the set of permutations.

The entire paper is intriguing and accessible. The writing is engaging, the expla-
nations lucid, and the results remarkable in their simplicity. The authors clearly took
great delight in sharing this story with the reader. There is almost a literary wink, where
the authors say if you thought that was neat, wait until you see what’s next.

Response from Pozdnyakov and Steele
What a surprise and a delight it is to hear that we have been awarded the Allen-

doerfer prize! When we began this project, we knew we had a story that we enjoyed
telling to friends and students, but we had no idea that it might be acknowledged in
this special way. We are both long-time readers of Mathematics Magazine, and, even
from high school days, we have had a love for expositions of interesting, accessible
mathematics. It is marvelous to hear that we have made a real contribution to this
generations-long conversation where we have been eager listeners for so many years.
We are genuinely moved. Thank you!

Biographical Notes
Vladimir Pozdnyakov received his Ph.D. in statistics in 2001 from the University of
Pennsylvania. Since that time, he has taught at the University of Connecticut, where
he is currently professor of statistics. His research is mostly in applied probability, and
he has a particular interest in the discovery and exploitation of martingale tricks.
J. Michael Steele received his Ph.D. in mathematics from Stanford University in 1975.
He has taught at U.B.C., Stanford, CMU, Princeton, and the Wharton School of the
University of Pennsylvania. He has worked in many parts of probability theory, and he
is the author of several books, including The Cauchy Schwarz Master Class published
by the MAA.
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The United States of America Mathematical Olympiad (USAMO) and Junior Olympiad
(USAJMO) are high-level contests in the style of the International Mathematical
Olympiad (IMO) offered by the Committee on the American Mathematics Com-
petitions of the Mathematical Association of America. The two competitions are
administered simultaneously, this year on April 19 and 20. Each competition uses the
IMO format, consisting of three problems for each of two days, with an allowed time
of 4.5 hours each day.

The USAMO is used to select a team of six students to represent the nation in the
IMO, and the level of the problems reflects the level expected on the IMO compe-
tition. The USAJMO, offered to students in grade 10 and below, is used to identify
students to train for participation in future IMO competitions. In setting problems for
the USAJMO, the Committee strives to provide a nicely balanced link between the
computational character of the AIME problems and the more advanced proof-oriented
problems of the USAMO.

The 2017 contests included two common problems. On the first day, problem
USAJMO1 was the same as USAMO1, and on the second day, USAJMO6 and
USAMO4 were identical. This year, 285 students sat for the USAMO contest and
222 for the USAJMO. More information is available on the AMC section of the MAA
website.

USAMO Problems

1. Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers
a > 1 and b > 1 such that ab + ba is divisible by a + b.

2. Let m1, . . . , mn be a collection of n positive integers, not necessarily distinct. For
any sequence of integers A = (a1, . . . , an) and any permutation w = w1, . . . , wn

of m1, . . . , mn , define an A-inversion of w to be a pair of entries wi , w j with i < j
for which one of the following conditions holds:

• ai ≥ wi > w j ,
• w j > ai ≥ wi , or
• wi > w j > ai .

Math. Mag. 90 (2017) 311–319. doi:10.4169/math.mag.90.4.311. c© Mathematical Association of America
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Show that, for any two sequences of integers A = (a1, . . . , an) and
B = (b1, . . . , bn), and for any positive integer k, the number of permutations of
m1, . . . , mn having exactly k A-inversions is equal to the number of permutations
of m1, . . . , mn having exactly k B-inversions.

3. Let ABC be a scalene triangle with circumcircle � and incenter I . Ray AI meets
BC at D and meets � again at M ; the circle with diameter DM cuts � again at K .
Lines MK and BC meet at S, and N is the midpoint of IS. The circumcircles of
�KID and �MAN intersect at points L1 and L2. Prove that � passes through the
midpoint of either IL1 or IL2.

4. Let P1, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1 other than
(1, 0). Each point is colored either red or blue, with exactly n of them red and
n of them blue. Let R1, . . . , Rn be any ordering of the red points. Let B1 be the
nearest blue point to R1 traveling counterclockwise around the circle starting from
R1. Then let B2 be the nearest of the remaining blue points to R2 traveling coun-
terclockwise around the circle from R2, and so on, until we have labeled all of
the blue points B1, . . . , Bn . Show that the number of counterclockwise arcs of the
form Ri → Bi that contain the point (1, 0) is independent of the way we chose the
ordering R1, . . . , Rn of the red points.

5. Let Z denote the set of all integers. Find all real numbers c > 0 such that there
exists a labeling of the lattice points (x, y) ∈ Z2 with positive integers for which

• only finitely many distinct labels occur, and
• for each label i , the distance between any two points labeled i is at least ci .

6. Find the minimum possible value of

a

b3 + 4
+ b

c3 + 4
+ c

d3 + 4
+ d

a3 + 4
,

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

Solutions

1. Let n be an odd positive integer, and take a = 2n − 1, b = 2n + 1. Then ab + ba ≡
1 + 3 ≡ 0 (mod 4), and ab + ba ≡ −1 + 1 ≡ 0 (mod n). Therefore, a + b = 4n
divides ab + ba .

This problem and solution were proposed by Gregory Galperin.
2. It suffices to show the result for B = (0, 0, . . . , 0) since then any sequence is

equivalent to any other sequence via B. We first show that the result holds for all
sequences of the form A = (a, a, . . . , a) for some a.

For each positive integer i , define the i th lifting map Bi on the permutations of
m1, . . . , mn by Bi (w1, . . . , wn) = v1, . . . , vn where v j = i if and only if wn+1− j =
i and where the subsequence of v consisting of all entries not equal to i (taken in
order) is equal to the subsequence of w consisting of all entries not equal to i .
Lemma. Let Ai−1 = (i − 1, i − 1, . . . , i − 1) and Ai = (i, i, . . . , i). Then the
number of Ai−1-inversions of w equals the number of Ai -inversions of Bi (w).
Moreover, Bi is a bijection on the permutations of m, showing the result in this
case.
Proof of Lemma. It is easy to see that Bi is a bijection for any i since we can reverse
the map.

Now, note that any Ai−1-inversions between entries not equal to i in w are still
Ai -inversions in Bi(w) and vice versa. Notice also that there are no Ai−1-inversions
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in w having i as the left entry. Similarly, there are no Ai -inversions having i as the
right entry in Bi (w).

On the other hand, in w, any non-i entry to the left of an i forms an Ai−1-
inversion with that i . And in Bi (w), any non-i entry to the right of an i forms
an Ai -inversion with that i . Since the positions of the i’s are reversed from w to
Bi (w), the number of inversions involving an i are equal in each case, and the
result follows. �

For j > i , we denote Bi→ j := Bj ◦ Bj−1 ◦ · · · ◦ Bi+2 ◦ Bi+1 and denote Bj→i :=
B−1

i→ j . Also, let Bi→i be the identity permutation.
Now, for A = (a1, . . . , an) and for a permutation w of m1, . . . , mn , we define

φA(w) as follows. Let w(1) = B0→a1(w) and, inductively, for i > 1 let w(i) be the
result of applying Bai−1→ai to the last n − i + 1 terms of w(i−1) and leaving the first
i − 1 terms unchanged. Finally, let φA(w) = w(n).
Lemma. The number of A-inversions of φA(w) is equal to the number of
B-inversions of w where B = (0, 0, . . . , 0).
Proof of Lemma. This is a consequence of the definition of φA: At any step w(i) in
the process of computing φA(w), we consider the sequence A(i) formed by chang-
ing the last n − i + 1 terms of the previous sequence A(i−1) (starting at A(0) =
(0, 0, . . . , 0)) from ai−1 to ai . Then we have A(n) = A, and at each step, the num-
ber of A(i)-inversions of w(i) is equal to the number of A(i−1)-inversions of w(i−1),
via an application of the previous lemma. The result follows. �

Now, φA is a bijection, being a composition of bijections, and we are done.
This problem and solution were proposed by Maria Monks Gillespie.

3. Let W be the midpoint of BC, and let X be the point on � opposite M . Observe that
line KD passes through X , and thus lines BC, MK, XA concur at the orthocenter of
�DMX, which is S. Denote by IA the A-excenter of ABC.

A

B CD

I

M

I

K

A

X

S

N

W

E

L

T

Next, let E be the foot of the altitude from I to XI A; observe that E lies on the
circle ω centered at M through I , B, C , IA. Then, S is the radical center of ω, �,
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and the circle with diameter IX; hence, line SI passes through E ; accordingly, I is
the orthocenter of �XSI A; denote by L the foot of the altitude from X to IA S.

We claim that this L lies on both the circumcircle of �KID and �MAN. It lies
on the circumcircle of �MAN since this circle is the nine-point circle of �XSI A.
For the other, note that �MWI ∼ �MIX since they share the same angle at M
and MW · MX = MB2 = MI2. Consequently, ∠IWM = ∠MIX = 180◦ − ∠LIM =
180◦ −∠MLI, enough to imply that quadrilateral MWIL is cyclic. But lines IL, DK,
and WM meet at X , so power of a point in cyclic quadrilaterals DKMW and MWIL
gives XD · XK = XM · XW = XI · XL, hence KDIL is cyclic as needed.

All that remains to show is that the midpoint T of IL lies on �. But this follows
from the fact that TM ‖ IA L =⇒ ∠MTX = 90◦, thus the problem is solved.

This problem and solution were proposed by Evan Chen.

4. Assume the points have been labeled P1, P2, . . . , P2n in order, going counterclock-
wise from (1, 0). Now, write out the color of each point in order, and replace each
R with a +1 and each B with a −1 to get a list p1, . . . , p2n of +1’s and −1’s. Con-
sider the partial sums sk = p1 + · · · + pk of this sequence, and choose the index
k with sk minimal (breaking ties by smallest k). Rotate the circle clockwise so
that points P1, . . . , Pk are moved past (1, 0); the resulting sequence of +1’s and
−1’s from the new orientation now has all nonnegative partial sums, and the total
sum is 0.

In the rotated diagram, arc R1 → B1 does not cross (1, 0), for otherwise the
sequence ends with a string of +1’s, and the partial sums before those +1’s
would be negative. Furthermore, the sequence of entries from R1 to B1 looks like
+1, +1, +1, . . . , +1, −1, and so removing R1 and B1 is equivalent to removing
a consecutive pair of a +1 and −1, so the partial sums remain all nonnegative. It
follows that the next pairing also doesn’t cross (1, 0), and so on. Thus, no counter-
clockwise arcs Ri → Bi cross (1, 0).

Finally, note that all the red points among P1, . . . , Pk are paired with blue points
in this same subsequence since there are no crossings in the rotated picture. Let m
be the difference between the number of blue and red points among P1, . . . , Pk .
Then, exactly m blue points in P1, . . . , Pk were matched with red points from
Pk+1, . . . , P2n . Therefore, when we rotate the circle back to its original position,
there are exactly m crossings, no matter how the red points were ordered. Since k
and m are independent of the ordering, the proof is complete.

This problem and solution were proposed by Maria Monks Gillespie.

5. The answer is that such a labeling is possible for any c <
√

2.
Let any c <

√
2 be given. We can partition Z2 into two subsets

L1 = {(x, y) | x + y is odd} and L ′
1 = {(x, y) | x + y is even}.

Both L1 and L ′
1 are square lattices with unit length

√
2. Hence, we can similarly

partition L ′
1 into two square lattices L2 and L ′

2 with unit length
√

2
2
, then partition

L ′
2 into two square lattices L3 and L ′

3 with unit length
√

2
3
, and so forth. Hence, for

any N ≥ 1, Z2 can be partitioned into N + 1 square lattices L1, L2, . . . , L N , L ′
N

with unit lengths
√

2,
√

2
2
, . . . ,

√
2

N
,
√

2
N

, respectively. Take N large enough so

that cN+1 ≤ √
2

N
. For i = 1, . . . , N , label all points in Li by i , and then label all

points in L ′
N by N + 1. Any two points in Li lie at least

√
2

i
> ci apart, while any

two points in L ′
N lie at least

√
2

N ≥ cN+1 apart, so this is a valid labeling.
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Now suppose that c ≥ √
2. For a nonnegative integer m, define

Rm = {(x, y) | 1 ≤ x ≤ 2a, 1 ≤ y ≤ 2b} ⊆ Z2,

where

(a, b) =
{

(m
2 , m

2 ) if m is even,
(m−1

2 , m+1
2 ) if m is odd.

We will show by induction that Rm does not have a valid labeling using only labels
at most m, which will prove that Z2 has no valid labeling. The case m = 0 is trivial.

Suppose m > 0 is odd and that Rm−1 does not have a valid labeling using only
1, . . . , m − 1 (the inductive hypothesis) but that Rm does have a valid labeling using
only 1, . . . , m. Consider this labeling of Rm . Since Rm ⊇ Rm−1, some point (x0, y0)

with y0 ≤ 2(m−1)/2 must be labeled m. But then (x0, y0) lies directly below a trans-
late R′ of Rm−1 inside Rm . The distance between (x0, y0) and any point in R′ is at
most √

(2
m−1

2 − 1)2 + (2
m−1

2 )2 <
√

2
m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no
valid labeling using only 1, . . . , m − 1, which is a contradiction.

Now suppose m > 0 is even and that Rm−1 does not have a valid labeling using
only 1, . . . , m − 1, but Rm does have a valid labeling using only 1, . . . , m. By the
inductive hypothesis, some point (x0, y0) with 1

4 · 2m/2 < y0 ≤ 3
4 · 2m/2 must be

labeled m (since the corresponding rows of Rm form a rotated copy of Rm−1). But
then (x0, y0) lies either directly to the left or to the right of a translate R′ of Rm−1

inside Rm . The distance between (x0, y0) and any point of R′ is less than√
( 3

4 · 2
m
2 )2 + (2

m−2
2 )2 =

√
13
4 ·

√
2

m
<

√
2

m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no
valid labeling using only 1, . . . , m − 1, which is a contradiction. This completes
the proof.

This problem and solution were proposed by Ricky Liu.
6. We will show that the minimum is 2

3 . We have

4a

b3 + 4
= a − ab3

b3 + 4
≥ a − ab

3

since AM-GM implies b3 + 4 = (b3/2) + (b3/2) + 4 ≥ 3b2. Then

a

b3 + 4
+ b

c3 + 4
+ c

d3 + 4
+ d

a3 + 4
≥ a + b + c + d

4
− ab + bc + cd + da

12

= a + b + c + d

4
− (a + c)(b + d)

12

≥ a + b + c + d

4
− (a + b + c + d)2/4

12

= 4

4
− 4

12
= 2

3
.

The minimum is realized when, for example, a = b = 2 and c = d = 0.
This problem and solution were proposed by Titu Andreescu.
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USAJMO Problems

1. Same as USAMO 1.
2. Consider the equation

(3x3 + xy2)(x2 y + 3y3) = (x − y)7.

(a) Prove that there are infinitely many pairs (x, y) of positive integers satisfying
the equation.

(b) Describe all pairs (x, y) of positive integers satisfying the equation.

3. Let ABC be an equilateral triangle and let P be a point on its circumcircle. Let lines
PA and BC intersect at D; let lines PB and CA intersect at E ; and let lines PC and
AB intersect at F . Prove that the area of triangle DEF is twice the area of triangle
ABC.

4. Are there any triples (a, b, c) of positive integers such that (a − 2)(b − 2)(c − 2) +
12 is a prime that properly divides the positive number a2 + b2 + c2 + abc − 2017?

5. Let O and H be the circumcenter and the orthocenter of an acute triangle ABC.
Points M and D lie on side BC such that BM = CM and ∠BAD = ∠CAD. Ray MO
intersects the circumcircle of triangle BHC in point N . Prove that ∠ADO = ∠HAN.

6. Same as USAMO 4.

Solutions

2. The following analysis solves both parts at once. Write the equation as

x(3x2 + y2)y(x2 + 3y2) = (x − y)7,

which is equivalent to

(x3 + 3xy2)(3x2 y + y3) = (x − y)7.

Let x3 + 3xy2 = a and 3x2 y + y3 = b. Then we have (ab)3 = (x − y)21 = (a −
b)7. Let d = gcd(a, b). Then a = du and b = dv for some relatively prime positive
integers u and v. Hence,

(uv)3 = d(u − v)7.

But gcd(u − v, uv) = 1. It follows that u − v = 1 and d = (uv)3. Hence, u =
k + 1 and v = k, where k is a positive integer, and so a = (k + 1)4k3 and b =
k4(k + 1)3. Then

(x − y)3 = a − b = [k(k + 1)]3

and

(x + y)3 = a + b = [k(k + 1)]3(2k + 1).

It follows that 2k + 1 = n3 for some odd integer n > 1 and that x + y = nk(k + 1)

and x − y = k(k + 1). Hence,

(x, y) =
(

(n + 1)k(k + 1)

2
,

(n − 1)k(k + 1)

2

)
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where k = n3−1
2 . Thus,

(x, y) =
(

(n + 1)(n6 − 1)

8
,

(n − 1)(n6 − 1)

8

)

where n is an odd integer greater than 1, and it is easy to check that these are
solutions to the given equation. Hence, these pairs describe all the solutions.

This problem and solution were proposed by Titu Andreescu.
3. We assume the points are configured so that P is on minor arc

(
BC of the circle.

Scale to set AB = 1. Then [ABC] = √
3/4. Set b = PB, c = PC, e = PE, and

f = PF. Note that ∠FBD = ∠ECD = ∠BPC = 120◦. Hence,

[DEF] = [BCEF] − [FBD] − [ECD] = 1

2
sin 120◦(BE · CF − BF · BD − CE · CD).

It suffices to show that [DEF] = √
3/2 or

2 = (BE · CF − BF · BD − CE · CD) = (b + e)(c + f ) − BF · BD − CE · CD.

Because ∠FBC = ∠BPC and ∠FCB = ∠PCB, triangles FCB and BCP are similar,
implying that

FC

BC
= CB

CP
= BF

PB
or

c + f

1
= 1

c
= BF

b
.

Thus, c + f = 1/c and BF = b/c. Analogously, b + e = 1/b and CE = c/b. It
remains to show that

2 = (b + e)(c + f ) − BF · BD − CE · CD = 1

bc
− b

c
· BD − c

b
· CD.

Note that ∠BPD = ∠CPD = 60◦, so we have BD/CD = BP/CP by the angle-
bisector theorem. Consequently, we have BD = b/(b + c) and CD = c/(b + c).
Thus, we want to show that

2 = 1

bc
− b

c
· BD − c

b
· CD = 1

bc
− b2

c(b + c)
− c2

b(b + c)

= 1

bc
− b3 + c3

bc(b + c)
= 1 − b2 − c2 + bc

bc
,

or b2 + c2 + bc = 1, which is true by applying the law of cosines in �BPC.
This problem was proposed by Titu Andreescu, Luis Gonzalez, and Cosmin

Pohoata. Solution by USA(J)MO packet reviewers.
4. Suppose (a, b, c) is such a triple. WLOG assume a ≤ b ≤ c. Put p = (a − 2)(b −

2)(c − 2) + 12 and s = a2 + b2 + c2 + abc − 2017 > 0. The prime p also divides
the difference

a2 + b2 + c2 + abc − 2017 − (a − 2)(b − 2)(c − 2) − 12

= (a + b + c)2 − 4(a + b + c) + 4 − 2025

= (a + b + c − 2)2 − 452

= (a + b + c − 47)(a + b + c + 43).

We first rule out a = 1: If b = 1 also, then the prime p = c + 10 divides
(c − 45)(c + 45) so divides either 35 or 55, hence p = 11 and c = 1. If b ≥ 3,
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then p > 0 only if c ≤ 14. But in all such cases, s < 0. And b = 2 implies p = 12,
which is not prime. Thus, a = 1 is impossible. Also, a = 2 is impossible, again
because 12 is not prime.

Now, let x = a − 2, y = b − 2, z = c − 2. We now know that 1 ≤ x ≤ y ≤ z
and (x + 2) + (y + 2) + (z + 2) > 47. So x + y + z ≥ 41, and therefore z ≥ 14.
The prime xyz + 12 cannot divide (x + 2) + (y + 2) + (z + 2) − 47 since xyz >

x + y + z − 41. Indeed, this latter inequality follows from x(yz − 1) ≥ yz − 1 ≥
y + z − 2 (the latter holds by (y − 1)(z − 1) ≥ 0).

Hence, xyz + 12 divides (x + 2) + (y + 2) + (z + 2) + 43. They cannot be
equal: x, y, z must all be odd, otherwise xyz + 12 is not prime, but then (x + 2) +
(y + 2) + (z + 2) + 43 is even and so not equal to xyz + 12. Thus, 2(xyz + 12) ≤
x + y + z + 49, implying 2yz − 1 ≤ x(2yz − 1) ≤ y + z + 25. It follows that
(2y − 1)(2z − 1) ≤ 53. If y = 1, then z ≤ 27; otherwise, y ≥ 2 and 2z − 1 ≤
53/3 < 18, implying x, y, z ≤ 9. In both cases, the requirement x + y + z ≥ 41 is
violated.

Thus, the desired triples (a, b, c) do not exist.
This problem and solution were proposed by Titu Andreescu.

5. The key idea is to prove that ADNO is cyclic. Once this is proven, the problem
follows by noticing that ∠ADO = ∠ANO = ∠HAN, where the latter holds due to
the fact that ON‖AH.

A

B

C

O

O

H

P

D

MN

To prove the concyclicity one can use power of a point. First, extend segment
AD to meet the circumcircle (denoted by �) of �ABC at P . Then P is the midpoint
of minor arc

(

BC of �, and P, M, N , O all lie on the perpendicular bisector of BC.
Next, notice that the reflection of H across line BC lies on �. This implies that
the circumcircle of �BHC is the reflection of � across line BC, so N is simply the
reflection of P . Hence, M is the midpoint of PN. Next, let O ′ denote the orthogonal
projection of O on AD. Clearly, OO′DM is cyclic, so power of a point yields PM ·
PO = PD · PO′. Then

PN · PO = 2 · PM · PO = 2 · PO′ · PD = PA · PD,

which by power of a point gives the concyclicity of ADNO. This completes the
proof.
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